More than 1,000 SARS-CoV-2 Coronavirus Protein 3D Structures Available

New Brunswick, N.J. (March 3, 2021) – The 3D structures of more than 1,000 SARS-CoV-2 coronavirus proteins are freely available

Read more

Harnessing the Power of Proteins in our Cells to Combat Disease

A lab on UNLV’s campus has been a hub of activity in recent years, playing a significant role in a new realm of drug discovery — one that could potentially provide a solution for patients who have run out of options.

Read more

Bringing Bad Proteins Back Into The Fold

DALLAS – Feb. 11, 2021 – A study led by UT Southwestern has identified a mechanism that controls the activity of proteins known as chaperones, which guide proteins to fold into the right shapes. The findings, published online today in Nature Communications, could shed light on hundreds of degenerative and neurodegenerative diseases caused by protein misfolding, such as Alzheimer’s, Parkinson’s, and Huntington’s, potentially leading to new treatments for these devastating conditions.

Read more

Researchers use lasers and molecular tethers to create perfectly patterned platforms for tissue engineering

University of Washington researchers developed a technique to modify naturally occurring biological polymers with protein-based biochemical messages to affect cell behavior. Their approach uses near-infrared lasers to trigger chemical adhesion of proteins to scaffolds made from biological polymers like collagen.

Read more

How to Identify Heat-Stressed Corals

Researchers have found a novel way to identify heat-stressed corals, which could help scientists pinpoint the coral species that need protection from warming ocean waters linked to climate change, according to a Rutgers-led study.

Read more

Rutgers Expert Can Discuss AI Advances Linked to RCSB Protein Data Bank

New Brunswick, N.J. (Dec. 3, 2020) – Stephen K. Burley, director of the RCSB Protein Data Bank headquartered at Rutgers University–New Brunswick, is available for

Read more

How Did Red Algae Survive in Extreme Environments?

Red algae have persisted in hot springs and surrounding rocks for about 1 billion years. Now, a Rutgers-led team will investigate why these single-celled extremists have thrived in harsh environments – research that could benefit environmental cleanups and the production of biofuels and other products.

Read more