Using Ion Beams to Improve Brain Microscopy

Improving the way scientists can see the microscopic structures of the brain can improve our understanding of a host of brain diseases, like Alzheimer’s or multiple sclerosis. Studying these diseases is challenging and has been limited by accuracy of available models.To see the smallest parts of cells, scientists often use a technique called electron microscopy.

Study on Magnetic Force Microscopy Wins 2023 Advances in Magnetism Award

An examination of the impact of image size on measurements from magnetic force microscopy has won the Advances in Magnetism Award, sponsored by AIP Advances. The paper was selected as the winner from nearly 200 papers submitted and Michael Vaka, now a data engineer at Zontal, was awarded a cash prize and a travel stipend to next year’s conference for his work, performed at BYU under the supervision of Karine Chesnel.

Collection of Articles Reports Advances in Building Cellular Organization Maps of the Human Body

A set of nine scientific papers was released today in the Nature family of journals and the journal Cell Reports describing breakthroughs in creating an open framework for scientists to map the individual cells of the human body in two and three dimensions.

Breakthrough microscopy technique “supersizes” cells to reveal genetic activity

Breakthrough microscopy techniques are helping researchers visualize the ways our molecules interact with the human genome. Researchers at Yale School of Medicine used a series of expandable gels to pull apart a cell and expand it to 4000 times its…

Transforming plants into allies in the fight against climate change

Nature-based solutions are an effective tool to combat climate change triggered by rising carbon emissions, whether it’s by clearing the skies with bio-based aviation fuels or boosting natural carbon sinks. At the Department of Energy’s Oak Ridge National Laboratory, scientists are leading research to transform plants into key drivers of decarbonization, from creating biomass crops for new fuels to enhancing the ability of plants to absorb and store carbon.

Niraula wins 2023 Endocrine Images Art Competition

Anzela Niraula, Ph.D., of the University of Washington in Seattle, won the Endocrine Society’s 2023 Endocrine Images Art Competition for her image of the microglia mandala. This contest celebrates the beauty of endocrine science, and entries were judged based on aesthetic value and significance to endocrine research.

The Roly-Poly Gold Rush

In Applied Physics Letters, researchers in the U.K. introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles’ locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.

UCI researchers decipher atomic-scale imperfections in lithium-ion batteries

As lithium-ion batteries have become a ubiquitous part of our lives through their use in consumer electronics, automobiles and electricity storage facilities, researchers have been working to improve their power, efficiency and longevity. As detailed in a paper published today in Nature Materials, scientists at the University of California, Irvine and Brookhaven National Laboratory conducted a detailed examination of high-nickel-content layered cathodes, considered to be components of promise in next-generation batteries.

UC Irvine scientists create new chemical imaging method

Irvine, Calif., Jan. 4, 2023 – A new visualization technology that captures spectral images of materials in the mid-infrared part of the electromagnetic spectrum has been developed by scientists at the University of California, Irvine. The discovery, which was recently featured on the cover of the journal Science Advances, promises to help researchers and industries across many fields, including medical and tech, quickly visualize the chemical composition of various materials or tissues.

Microbial miners could help humans colonize the moon and Mars

The biochemical process by which cyanobacteria acquire nutrients from rocks in Chile’s Atacama Desert has inspired engineers at the University of California, Irvine to think of new ways microbes might help humans build colonies on the moon and Mars.

NSLS-II Researchers Win 2022 Microscopy Today Innovation Award

UPTON, NY On Aug. 3, 2022, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory received the 2022 Microscopy Today Innovation Award for their development of a system with bonded x-ray lenses that make nanoscale resolution more accessible than ever before. When the team at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility, tested the new lens system, they achieved a resolution down to approx.

Unearthing the secrets of plant health, carbon storage with rhizosphere-on-a-chip

Scientists at the Department of Energy’s Oak Ridge National Laboratory have created a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration.

UCI scientists observe effects of heat in materials with atomic resolution

As electronic, thermoelectric and computer technologies have been miniaturized to nanometer scale, engineers have faced a challenge studying fundamental properties of the materials involved; in many cases, targets are too small to be observed with optical instruments. Using cutting-edge electron microscopes and novel techniques, a team of researchers at the University of California, Irvine, the Massachusetts Institute of Technology and other institutions has found a way to map phonons – vibrations in crystal lattices – in atomic resolution, enabling deeper understanding of the way heat travels through quantum dots, engineered nanostructures in electronic components.

International team visualizes properties of plant cell walls at nanoscale

To optimize biomaterials for reliable, cost-effective paper production, building construction, and biofuel development, researchers often study the structure of plant cells using techniques such as freezing plant samples or placing them in a vacuum. These methods provide valuable data but often cause permanent damage to the samples.

A biological fireworks show 300 million years in the making

Scientists using the Advanced Photon Source have determined that amphibian eggs release showers of zinc upon fertilization, just like mammalian eggs. This research could have implications for human fertility studies.

Mouse brain imaged from the microscopic to the macroscopic level

Researchers at the University of Chicago and the U.S. Department of Energy’s (DOE) Argonne National Laboratory have leveraged existing advanced X-ray microscopy techniques to bridge the gap between MRI (magnetic resonance imaging) and electron microscopy imaging, providing a viable pipeline for multiscale whole brain imaging within the same brain

UCI-led study finds that cancer immunotherapy may self-limit its efficacy

Irvine, Calif., June 21, 2021 — Cancer immunotherapy involving drugs that inhibit CTLA-4 also activates an unwanted response that may self-limit its efficacy in fighting tumors, according to a new study led by Francesco Marangoni, Ph.D., assistant professor of physiology & biophysics and member of the Institute for Immunology at the University of California, Irvine.

Argonne researchers using artificial intelligence to shape the future of science

Artificial intelligence is being called “the next generation of the way we do science.” At Argonne, researchers are leveraging the lab’s state-of-the-art-facilities and unparalleled expertise to shape the very future of science.

ORNL’s superb materials expertise, data and AI tools propel progress

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

‘Leap forward’ in risk management of rectal cancer

Rectal cancer, along with colon cancer, is the third-most common type of cancer in the United States, and treatment and surgery greatly affect the quality of life of patients. A multi-disciplinary team at Washington University in St. Louis has developed and tested an innovative imaging technique that is able to differentiate between rectal tissues with residual cancers and those without tumors after chemotherapy and radiation, which could one day help to avoid unnecessary surgeries in some patients who have achieved complete tumor destruction after chemoradiation.

A COSMIC Approach to Nanoscale Science

COSMIC, a multipurpose X-ray instrument at Berkeley Lab’s Advanced Light Source, has made headway in the scientific community since its launch less than 2 years ago, with groundbreaking contributions in fields ranging from batteries to biominerals.

UCI scientists measure local vibrational modes at individual crystalline faults

Irvine, Calif., Jan. 11, 2021 – Often admired for their flawless appearance to the naked eye, crystals can have defects at the nanometer scale, and these imperfections may affect the thermal and heat transport properties of crystalline materials used in a variety of high-technology devices. Employing newly developed electron microscopy techniques, researchers at the University of California, Irvine and other institutions have, for the first time, measured the spectra of phonons – quantum mechanical vibrations in a lattice – at individual crystalline faults, and they discovered the propagation of phonons near the flaws.

Defects Slow the Electron’s Dance

Researchers used two advanced microscopy techniques to learn how crystal defects affect the performance of crystalline solar cells called lead halide perovskite cells. The research used two microscopy techniques: electron backscattering diffraction to view crystal quality at scales of 100 nanometers and ultrafast microscopy to examine how electrons move. The research shows that microscopic defects that form when the crystals are made can reduce how fast electrons move by a factor of almost 10.

October 27, 2020 Web Feature Enabling the Data-Driven Future of Microscopy

An international research team led by PNNL has published a vision for electron microscopy infused with the latest advances in data science and artificial intelligence. Writing a commentary in Nature Materials, the team proposes a highly integrated, autonomous, and data-driven microscopy architecture to address challenges in energy storage, quantum information science, and materials design.

UCI materials scientists discover design secrets of nearly indestructible insect

Irvine, Calif., Oct. 21, 2020 – With one of the more awe-inspiring names in the animal kingdom, the diabolical ironclad beetle is one formidable insect. Birds, lizards and rodents frequently try to make a meal of it but seldom succeed. Run over it with a car, and the critter lives on. The beetle’s survival depends on two key factors: its ability to convincingly play dead and an exoskeleton that’s one of the toughest, most crush-resistant structures known to exist in the biological world.

Study First to Tally Biomass from Oceanic Plastic Debris Using Visualization Method

Scientists examined cell abundances, size, cellular carbon mass, and how photosynthetic cells differ on polymeric and glass substrates over time, exploring nanoparticle generation from plastic like polystyrene and how this might disrupt microalgae. Conservative estimates suggest that about 1 percent of microbial cells in the ocean surface microlayer inhabit plastic debris globally. This mass of cells would not exist without plastic debris in the ocean, and thus, represents a disruption of the proportions of native flora in that habitat.

UCI materials scientists study a sea creature that packs a powerful punch

Irvine, Calif., Aug. 17, 2020 – University of California, Irvine materials scientists are learning about resilience from the mantis shrimp. The ancient crustaceans are armed with two hammerlike raptorial appendages called dactyl clubs that they use to bludgeon and smash their prey. These fists, able to accelerate from the body at over 50 mph, deliver powerful blows yet appear undamaged afterward.