Dancing Matter: New form of movement of cyclic macromolecules discovered

Physicists show unique polymer behavior using computer simulationsEmploying a computer simulation, physicists Maximilian Liebetreu and Christos Likos have shown a unique dynamic behavior of cyclic polymers. Their motion can be distinguished into phases, and the scientists were able to observe the so-called “inflation phase” for the first time.

Read more

Science Snapshot From Berkeley Lab – a biocompatible material that turns up the heat on antibacterial-resistant diseases

Scientists at Berkeley Lab’s Molecular Foundry have designed a biocompatible polymer that has the potential to advance photothermal therapy, a technique that deploys near-infrared light to combat antibacterial-resistant infections and cancer.

Read more

A Robot and Software Make it Easier to Create Advanced Materials

A Rutgers-led team of engineers has developed an automated way to produce polymers, making it much easier to create advanced materials aimed at improving human health. The innovation is a critical step in pushing the limits for researchers who want to explore large libraries of polymers, including plastics and fibers, for chemical and biological applications such as drugs and regenerative medicine through tissue engineering.

Read more

3D-Printed Plastics With High Performance Electrical Circuits

Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures. They used pulses of high-energy light to fuse tiny silver wires, resulting in circuits that conduct 10 times more electricity than the state of the art, according to a study in the journal Additive Manufacturing. By increasing conductivity 10-fold, the engineers can reduce energy use, extend the life of devices and increase their performance.

Read more