Argonne scientists use AI to identify new materials for carbon capture

Researchers at the U.S. Department of Energy’s Argonne National Laboratory have used new generative AI techniques to propose new metal-organic framework materials that could offer enhanced abilities to capture carbon

A revolution in the making

Argonne National Laboratory is shaping Industry 4.0 with groundbreaking research into advanced ways of making things more effective, efficient and economical, using the most cutting-edge materials and processes, with the lowest possible environmental impact.

How Scientists Are Accelerating Next-Gen Microelectronics

In a new Q&A, microelectronics expert and CHiPPS Director Ricardo Ruiz shares his perspective on keeping pace with Moore’s Law in the decades to come through a revolutionary technique called extreme ultraviolet lithography.

Scientists discover unusual ultrafast motion in layered magnetic materials

A team of researchers report a mechanical response across a layered magnetic material tied to changing its electron spin. This response could have important applications in nanodevices requiring ultra-precise and fast motion control.

Tiny plastic particles also find their way into the brain

Led by Lukas Kenner (Department of Pathology at MedUni Vienna and Department of Laboratory Animal Pathology at Vetmeduni) and Oldamur Hollóczki (Department of Physical Chemistry, University of Debrecen, Hungary) the research team was able to determine that tiny polystyrene particles could be detected in the brain just two hours after ingestion. The mechanism that enabled them to breach the blood-brain barrier was previously unknown to medical science.

What can we do about all the plastic waste?

The Institute for the Cooperative Upcycling of Plastics (iCOUP) is helping to address the plastic waste accumulation problem by developing the science needed to turn used plastic into valuable materials.

Sixbert Muhoza studies a new class of materials that could help fight climate change

A scholar in Argonne’s Applied Materials Division, Sixbert Muhoza is studying a new class of materials called MXenes that could improve batteries and help convert carbon dioxide to fuel.

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

On the Road to Better Solid-State Batteries

A team from Berkeley Lab and Florida State University has designed a new blueprint for solid-state batteries that are less dependent on specific chemical elements. Their work could advance efficient, affordable solid-state batteries for electric cars.

AI Discovers New Nanostructures

UPTON, NY—Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have successfully demonstrated that autonomous methods can discover new materials. The artificial intelligence (AI)-driven technique led to the discovery of three new nanostructures, including a first-of-its-kind nanoscale “ladder.

Scientists turn single molecule clockwise or counterclockwise on demand

Argonne scientists report they can precisely rotate a single molecule on demand. The key ingredient is a single atom of europium, a rare earth element. It rests at the center of a complex of other atoms and gives the molecule many practical applications.

Positively Charged Nanomaterials Treat Obesity Anywhere You Want

Columbia researchers invent new method to treat obesity by using cationic nanomaterials that can target specific areas of fat and inhibit the unhealthy storage of enlarged fat cells. “Our studies highlight an unexpected strategy to treat visceral adiposity and suggest a new direction of exploring cationic nanomaterials for treating metabolic diseases,” said Columbia Engineering’s Biomedical Engineering Prof Kam Leong, a pioneer in using polycation to scavenge pathogens.

Entrepreneurship program at Argonne National Laboratory opens applications for startups

Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is accepting applications for its next fellowship cohort.

Superatomic Magnetic Cluster Opens the Door to New Nanomaterials

Magnetic materials are essential to applications including data storage, cell phones, motors, and sensors. Researchers have synthesized a new, extremely small, thermally stable magnetic nanoparticle based on the principle of superatoms. The superatom structure groups electronic states in electron shells. This translates into a nanoparticle with high stability and a large spin magnetic moment.

First Atomic View of a Quantum Electronic Device in Operation

For the first time, researchers have used ultrafast electron diffraction to observe a quantum electronic device as it operates. Researchers observed atomic-level changes in the vanadium dioxide switch over millionths of a second, leading to the discovery of a short-lived intermediate state. The results may aid in the development of high-speed, high-efficiency quantum electronics and in the use of pulsed electric fields to create new engineered materials.

UCI researchers invent a health monitoring wearable that operates without a battery

Irvine, Calif., July 12, 2022 – A new self-powered, wristwatch-style health monitor invented by researchers at the University of California, Irvine can keep track of a wearer’s pulse and wirelessly communicate with a nearby smartphone or tablet – without needing an external power source or a battery. In a paper published recently in the journal Nano Energy, team members in UCI’s Henry Samueli School of Engineering describe their invention, built via 3D printing of nanomaterials on flexible substrates for real-time and wireless monitoring of vital signs.

Electrospinning Promises Major Improvements in Wearable Technology

In APL Bioengineering, researchers from Tufts University examine some of the latest advances in wearable electronic devices and systems being developed using electrospinning – the fabrication of nanofibers with tunable properties from a polymer base – and showcase the many advantages electrospun materials have over conventional bulk materials. Their high surface-to-volume ratio endows them with enhanced porosity and breathability, which is important for long-term wearability, and with the appropriate blend of polymers, they can achieve superior biocompatibility.

Chemical Institute of Canada Gives Top Honor to University of Oklahoma Engineering Professor

The 2022 Robert B. Anderson Catalysis Award from the Chemical Institute of Canada’s Catalysis Division was presented to University of Oklahoma engineering professor Daniel Resasco, Ph.D., for his research that deepens the understanding of chemical reactions in the production of sustainable energy.

Fixing Spinal Cord Injuries With ‘Dancing Molecules’

Researchers have created an injectable therapy for spinal cord injuries that uses specially engineered molecules that trigger a healing response in spinal cells. These molecules come together to form tiny fibers in a liquid solution. Scientists can control the motion of these fibers, allowing the fibers to connect more effectively with cells in the spine. The research may lead to a cure for spinal injuries in humans.

Pushing the Boundaries of Moore’s Law: How Can Extreme UV Light Produce Tiny Microchips?

Some analysts say that the end of Moore’s Law is near, but Patrick Naulleau, the director of Berkeley Lab’s Center for X-Ray Optics (CXRO), says that it could be decades before the modern chip runs out of room for improvement, thanks to advances in materials and instrumentation enabled by the CXRO.

Decoding the Lifecycle of Photogenerated Charges

New materials will enable novel technologies to turn sunlight into electricity and fuels. Combinations of molecules and tiny nanoparticles make these materials a reality. Scientists have found a way to track electrons along their round trip from the molecules to the nanoparticles and back, helping to find where electrons can travel and where they get stuck, information that is crucial to finding better combinations for innovative materials.

Enclosing Radiation-Loaded Particles to Better Seek and Destroy Cancer

When medical isotopes are used to treat diseases, they emit large amounts of energy that makes it hard to keep them near the target cells. Researchers are now testing a way to enclose isotopes in tiny pieces of biodegradable material that will keep the isotopes at treatment sites, ensuring that their energy can kill diseased cells with little effect on surrounding cells.

Just by changing its shape, Argonne scientists show they can alter material properties

Argonne scientists have observed that when the shape of a thin film of metal oxide known as titania is confined at the mesoscale, its conductivity increases. This finding demonstrates that nanoscale confinement is a way to control quantum effects.

Stretching the capacity of flexible energy storage (video)

Researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.

Patterning Silicon at the One Nanometer Scale

Scientists have developed a technique called plasmon engineering to create nanomaterials with near-atomic scale control of patterning in silicon. This new research used a specific plasmon engineering method, aberration-corrected electron beam lithography, to control the optical and electronic properties of silicon. This approach could one day be applied to industrial applications.

Now in 3D: Deep learning techniques help visualize X-ray data in three dimensions

A team of Argonne scientists has leveraged artificial intelligence to train computers to keep up with the massive amounts of X-ray data taken at the Advanced Photon Source.

Main Attraction: Scientists Create World’s Thinnest Magnet

Scientists at Berkeley Lab and UC Berkeley have created an ultrathin magnet that operates at room temperature. The ultrathin magnet could lead to new applications in computing and electronics – such as spintronic memory devices – and new tools for the study of quantum physics.

The Electrochemical Society Awards 2021 ECS Colin Garfield Fink Fellowship to Ali Othman

Ali Othman, PhD, Research Associate in Clarkson University’s Department of Chemical & Biomolecular Science, received The Electrochemical Society’s prestigious 2021 ECS Colin Garfield Fink Fellowship. The fellowship provides financial assistance for Othman’s research in the months of June through August. His work focuses nanomaterials and the interface chemistry of materials and their bio(sensing) and environmental applications.

New Dual-Beam Microscope Installed at the Center for Functional Nanomaterials

This latest-generation tool, which combines a scanning electron microscope and focused-ion beam, has advanced capabilities for preparing and analyzing nanomaterial samples.

Watching the Evolution of Nanostructures in Thin Films

Scientists have found a way to turn X-ray fluorescence into an ultra-high position-sensitive probe to measure nanostructures in thin films. The fluorescence reveals the evolution of nanostructures in real time with nearly atomic-level resolution, something no other technique has achieved. This allows scientists to watch nanostructures in thin films evolve with unprecedented precision and design thin films for new applications.