Turning Hazelnut Shells into Potential Renewable Energy Source

In Journal for Renewable and Sustainable Energy, researchers share their work on the physicochemical properties and antioxidant activity of wood vinegar and tar fraction in bio-oil produced from hazelnut shells pyrolysis at 400 degrees Celsius to 1,000 C. The researchers found the wood vinegar and tar left over after burning the shells contained the most phenolic substances, which laid a foundation for the subsequent research on antioxidant properties.

How Do Wind Turbines Respond to Winds, Ground Motion During Earthquakes?

Wind power has experienced fast growth within China during the past decade, but many wind farms are being built within regions of high seismic activity. In Journal of Renewable and Sustainable Energy, researchers present their work exploring the dynamic behaviors of wind turbines subjected to combined wind-earthquake loading. The group discovered that changes in the wind increase and decrease the response amplitude of the wind turbine under weak and strong earthquakes, respectively.

LLNL optimizes flow-through electrodes for electrochemical reactors with 3D printing

To take advantage of the growing abundance and cheaper costs of renewable energy, Lawrence Livermore National Laboratory (LLNL) scientists and engineers are 3D printing flow-through electrodes (FTEs), core components of electrochemical reactors used for converting CO2 and other molecules to useful products.

Department of Energy awards $4.15 million to Argonne to support collaborations with industry

The U.S. Department of Energy has awarded $4.15 million to Argonne National Laboratory to support collaborations with industry aimed at commercializing promising energy technologies.

Sensor Data Identifies Turbine Wake Clustering, Improves Wind Farm Productivity Via Yaw Control

In the Journal of Renewable and Sustainable Energy, researchers describe a real-time method for potentially helping turbine farms realize additional power from the clustering of their turbines. Their method requires no new sensors to identify which turbines at any given time could increase power production if yaw control is applied, and validation studies showed an increase of 1%-3% in overall power gain.

Baylor Study Evaluates Biodiversity Impacts of Alternative Energy Strategies

Climate change mitigation efforts have led to shifts from fossil-fuel dependence to large-scale renewable energy. However, renewable energy sources require significant land and could come at a cost to ecosystems. A new study led by Ryan McManamay, Ph.D., assistant professor of environmental science at Baylor University, evaluates potential conflicts between alternative energy strategies and biodiversity conservation.

Steering Wind Turbines Creates Greater Energy Potential

For wind farms, it is important to control upstream turbines in an efficient manner so downstream turbines are not adversely affected by upstream wake effects. In the Journal of Renewable and Sustainable Energy, researchers show that by designing controllers based on viewing the wind farm system as a coupled network, it is possible to extract power more efficiently.

Saving the climate with solar fuel

Produced in a sustainable way, synthetic fuels contribute to switching mobility to renewable energy and to achieving the climate goals in road traffic. In the mobility demonstrator “move” Empa researchers are investigating the production of synthetic methane from an energy, technical and economic perspective – a project with global potential.

Argonne demonstrates benefits of restoring native vegetation at solar facilities

Modeling different land use types, Argonne researchers demonstrate that the growth of native grasslands on large solar utility sites can help restore biodiversity, maintain ecosystem services and aid agriculture.

Liquid-like motion in crystals could explain their promising behavior in solar cells

Scientists studied the inner workings of a solar cell material using X-ray and neutron scattering. The study revealed that liquid-like motion in the material may be responsible for their high efficiency in producing electric currents from solar energy.

Argonne leads creation of definitive valuation guide for pumped storage hydropower

Argonne scientists led four other laboratories in developing definitive guidance on how to value pumped storage hydropower projects. Their efforts resulted in DOE publication of the Pumped Storage Hydropower Valuation Guidebook: A Cost-Benefit and Decision Analysis Valuation Framework. The guide provides an objective, transparent valuation methodology and helps measure both monetary and non-monetary value streams.

Bioenergy expert available: Meltem Urgun-Demirtas, Argonne National Laboratory

Argonne engineer Meltem Urgun-Demirtas leads the Bioprocesses and Reactive Separations group at Argonne, where she brings more than 20 years of diverse experience in waste and water treatment, biofuels production and materials synthesis for energy and environmental applications. Working with…

GREEN ENERGY TECHNOLOGY

As Earth Day approaches, a promising startup that grew out of University of Delaware research is on the cusp of making sustainable green hydrogen a reality. Versogen, a UD spinoff company led by Professor Yushan Yan, is one of three startups selected for the fourth cohort of the Shell GameChanger Accelerator (GCxN) program.

Experts’ Predictions for Future Wind Energy Costs Drop Significantly

Technology and commercial advancements are expected to continue to drive down the cost of wind energy, according to a survey led by Berkeley Lab of the world’s foremost wind power experts. Experts anticipate cost reductions of 17%-35% by 2035 and 37%-49% by 2050, driven by bigger and more efficient turbines, lower capital and operating costs, and other advancements.

Cybersecurity in the Blue Economy

More than two-thirds of the Earth’s surface is covered by the oceans and seas. Over the next decade, these vast waters are expected to add $3 trillion to the global economy by generating electricity using marine renewable energy (MRE) devices. These “blue economy” technologies harness power across waves, tides, and currents that could reduce the carbon footprint from energy production and provide grid stability to remote coastal communities.

Shining, Colored LED Lighting on Microalgae for Next-Generation Biofuel

As biofuels continue to present challenges, microalgae are gaining momentum as a biofuel energy crop. In the Journal of Renewable and Sustainable Energy, researchers show how a combination of monochromatic red and blue LED illumination on one type of microalga can enhance its growth and increase the biosynthesis of critical components, such as lipids, for microalgae feedstock development. The researchers focused on Dunaliella salina, typically extracted from sea salt fields and found in salt lakes.

Science Snapshots From Berkeley Lab – Week of March 29, 2021

India’s Ambitious Clean Energy Goals, a Secret Pathway to Harnessing the Sun for Clean Energy, and a Supersmart Gas Sensor for Asthmatics

Reshaping the future of the electric grid through low-cost, long-duration discharge batteries

Research begun at the Department of Energy’s Joint Center for Energy Storage Research and continued at spinoff company Form Energy may launch a new era of renewable energy.

Research promotes ‘doubly green’ renewable energy captured from biowaste

Cities around the United States could use their own biowaste from food scraps or manure to produce renewable energy for vehicles to the tune of $10 billion a year, according to a researcher at Missouri S&T. The proposed operation creates renewable natural gas (RNG) from biowaste and renewable hydrogen (RH2) from surplus electricity generated by solar or wind energy.

Green fuels for aviation

Researchers at the Paul Scherrer Institute PSI and the partner institute Empa have started a joint initiative called SynFuels. The goal is to develop a process for producing kerosene from renewable resources. In this way liquid fuel mixtures of the highest quality, which would allow the most residue-free combustion possible and thus be suitable for aircraft propulsion, should be obtainable using carbon dioxide and hydrogen from renewable resources.

Low-Level Jets Create Winds of Change for Turbines

Global wind power capacity has increased more than fivefold over the past decade, leading to larger turbines, but low-level jets are one cause for concern. The effects of these strong, energetic wind flows depend on how high the wind flows are in relation to the turbines. In the Journal of Renewable and Sustainable Energy, researchers considered three different scenarios in which the LLJs were above, below, and in the middle of the turbine rotors.

How Argonne is working to power a clean energy revolution

A growing global population will need energy from a range of sources. Scientists at Argonne National Laboratory have been pioneering solutions for 75 years.

Great expectations: Argonne scientists weigh benefits of increased hydrogen production

Hydrogen technology has the potential to transform aspects of the energy landscape, according to a new report from Argonne scientists.