Researchers Demonstrate First Precision Gene Editing in Miscanthus

Miscanthus thrives on marginal lands with limited fertilization and tolerates drought and cool temperatures, making it an ideal bioenergy candidate. Previous efforts to genetically improve miscanthus focused on introducing external genes at random places in the plant’s genomes. This research developed gene-editing procedures using CRISPR/Cas9 that will allow scientists to selectively target existing genes to knock out their function and introduce new genes into precise locations.

DOE funds next-generation Center for Bioenergy Innovation at ORNL to advance renewable jet fuel

The Center for Bioenergy Innovation has been renewed by the Department of Energy as one of four bioenergy research centers across the nation to advance robust, economical production of plant-based fuels and chemicals. CBI, led by Oak Ridge National Laboratory, is focused on the development of nonfood biomass crops and specialty processes for the production of sustainable jet fuel to help decarbonize the aviation sector.

Engineered Poplar Lignin Has More of a Valuable “Clip-off” Chemical

Lignin, the complex polymer that gives plants their structural integrity, makes them difficult to break down and creates challenges for the creation of biochemicals and bioproducts. Building blocks that are present in small amounts in the lignin of the bioenergy crop poplar are valuable platform chemicals that are easy to “clip-off” during plant deconstruction. Scientists engineered a new type of poplar to have more of a specific building block in its lignin and less lignin overall. This results in wood that is easier to deconstruct and more valuable as a bioproduct raw material.

Scientists ID Sterol Essential for Oil Accumulation in Plants

Scientists seeking to unravel the details of how plants produce and accumulate oil have identified a new essential component of the assembly line–a particular sterol that plays a key role in the formation of oil droplets. The findings may suggest new ways to engineer the oil content of a variety of plant tissues for potential applications in bioenergy, chemical engineering, and nutrition.

Pretreating Nuisance Green Algae with Lye, Urea Increases Bacterial Production of Biogas

An international research team reports their success in using urea and sodium hydroxide (NaOH, commonly known as lye or caustic soda) as a pretreatment of algae, which breaks down cellulose and more than doubles biogas production under their initial experimental conditions.

Enhancing Land Surface Models to Grow Perennial Bioenergy Crops

To understand the effects of expanding biofuel production, scientists must accurately represent biofuel crops in land surface models. Using observations from biofuel plants in the Midwestern United States, researchers simulated two biofuel perennial plants, miscanthus and switchgrass. The simulations indicate these high-yield perennial crops have several advantages over traditional annual bioenergy crops—they assimilate more carbon dioxide, and they require fewer nutrients and less water.

Fields of Breeders’ Dreams: A Team Effort Toward Targeted Crop Improvements

In Nature, a multi-institutional team including DOE Joint Genome Institute researchers has produced a high-quality reference sequence of the complex switchgrass genome. Building off this work, bioenergy researchers are exploring targeted genome editing techniques to customize the crop.

How Did Red Algae Survive in Extreme Environments?

Red algae have persisted in hot springs and surrounding rocks for about 1 billion years. Now, a Rutgers-led team will investigate why these single-celled extremists have thrived in harsh environments – research that could benefit environmental cleanups and the production of biofuels and other products.

Jennifer Doudna Wins 2020 Nobel Prize in Chemistry

Biochemist Jennifer Doudna, a professor at UC Berkeley and faculty scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), is co-winner of the 2020 Nobel Prize in Chemistry for “the development of a method for genome editing.”

Brookhaven Biochemist Receives Prestigious Award for Plant Lipid Research

Jantana Keereetaweep, a biochemistry research associate in the biology department at the U.S. Department of Energy’s Brookhaven National Laboratory, has been awarded the Paul K. Stumpf Award for her research on plant lipids (fats and oils). The award, given every two years, recognizes the contributions of a promising early-career scientist in honor of Stumpf, who was a world leader and pioneer in the study of plant lipid biochemistry.

Making Biofuels Cheaper by Putting Plants to Work

One strategy to make biofuels more competitive is to make plants do some of the work themselves. Scientists can engineer plants to produce valuable chemical compounds, or bioproducts, as they grow. Then the bioproducts can be extracted from the plant and the remaining plant material can be converted into fuel. But one important part of this strategy has remained unclear — exactly how much of a particular bioproduct would plants need to make in order to make the process economically feasible?

How to Make it Easier to Turn Plant Waste into Biofuels

Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, works well at close to room temperature, unlike conventional processes, according to a Rutgers-led study in the journal Green Chemistry.

Scientists Discover Key Factors in How Some Algae Absorb Solar Energy

Scientists have discovered how diatoms – a type of algae that produces 20 percent of the Earth’s oxygen – absorb solar energy for photosynthesis. The Rutgers University-led discovery, published in the journal Proceedings of the National Academy of Sciences, could help lead to more efficient and affordable algae-based biofuels and combat climate change from fossil fuel burning.