MTU engineers examine lithium battery defects

Lithium dendrites cause poor performance and even explosions in batteries with flammable liquid electrolytes. How these dendrites grow, even with a solid electrolytes, is still a mystery, but materials engineers at MTU and Oak Ridge study the conditions that enable dendrites and how to stop them.

Read more

How to Make it Easier to Turn Plant Waste into Biofuels

Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, works well at close to room temperature, unlike conventional processes, according to a Rutgers-led study in the journal Green Chemistry.

Read more

New material captures and converts toxic air pollutant into industrial chemical

A team led by the University of Manchester has developed a metal-organic framework material providing a selective, reversible and repeatable capability to capture a toxic air pollutant, nitrogen dioxide, which is produced by combusting fossil fuels. The material then requires only water and air to convert the captured gas into nitric acid for industrial use.

Read more

Search for Lightweight Alloying Solutions Earns Team a Gordon Bell Finalist Nomination

A team used the Summit supercomputer to simulate a 10,000-atom magnesium dislocation system at 46 petaflops, a feat that earned the team an ACM Gordon Bell Prize finalist nomination and could allow scientists to understand which alloying materials to add to improve magnesium alloys.

Read more