PROSPECT Characterizes the Footprint of Neutrinos

Predictions based on the Standard Model of particle physics don’t always agree with what scientists see in experimental data. One way to examine these differences is emissions of neutrinos from nuclear reactors. As part of this research agenda, scientists in the PROSPECT Collaboration have reported the most precise measurement ever of the energy spectrum of antineutrinos emitted from the fission of uranium-235, providing a new reference energy spectrum and new constraints on the origin of the disagreements between data and models.

Theoretical and Experimental Physics Team Up in the Search for Particle Flavor Change

Scientists recently discovered that neutrinos have mass, counter to long-held understanding. This means that neutrinos can change flavor. Now, advances in theory and experiment are helping scientists to determine whether the neutrinos’ charged counterparts—electrons, muons, and tauons—can also change flavor and how future experiments can look for those changes.

Detecting Neutrinos from Nuclear Reactors with Water

Neutrinos are subatomic particles produced in many types of radioactive decays, including in nuclear reactors. Because neutrinos interact with matter extremely weakly, they are impossible to shield. The SNO+ experiment has just shown that a detector filled with simple water can detect neutrinos from nuclear reactors, even though the neutrinos create only tiny signals in the detector.

Understanding the Origin of Matter with the CUORE Experiment

Neutrinos are involved in a process named beta decay that involves a neutron converting into a proton emitting an electron and an antineutrino. There may also be an ultra-rare kind of beta decay that emits two electrons but no neutrinos, called neutrinoless-double beta decay (NLDBD). Researchers are using the Cryogenic Underground Observatory for Rare Events (CUORE) to search for these rare NLDBD processes using different nuclei. Scientists have reported new tests using Tellurim-128 to look for NLDBD.

Brookhaven Lab Physicist Mary Bishai Elected DUNE Co-Spokesperson

Mary Bishai, a distinguished scientist at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has been elected co-spokesperson of the Deep Underground Neutrino Experiment (DUNE). In her new role, Bishai will lead DUNE’s 1,400-member international collaboration—the largest neutrino collaboration in the world.

Particle Physicists Lay Out Future Goals at ‘Snowmass’ Meeting

With a picturesque backdrop of Mt. Rainier, particle physicists from across the United States gathered in Seattle (with more tuning in virtually) to assess the most important science opportunities in their field over the next decade. The Particle Physics Community Planning Exercise was held July 17-26, 2022, at the University of Washington.

Direct Neutrino-Mass Measurement Achieves New, Sub-Electronvolt Sensitivity

The international KArlsruhe TRItium Neutrino (KATRIN) experiment in Germany recently reported a new upper limit on the mass of the neutrino. This limit—0.8 electronvolts (eV)—is the lowerst scientists have achieved. As the results are confirmed and refined, they will help scientists better understand the neutrino and its role in the evolution of the universe.

Brookhaven Chemist Minfang Yeh Wins 2021 DPF Instrumentation Award

UPTON, NY—Minfang Yeh, a senior scientist at the U.S. Department of Energy’s Brookhaven National Laboratory, has won the American Physical Society’s 2021 Division of Particles and Fields (DPF) Instrumentation Award. The award honors Yeh’s pioneering work in the development and production of high-performance water-based liquid scintillators for particle physics experiments, including metal loaded scintillators for rare process experiments.

Scientists Spot Rare Neutrino Signal for Big Physics Finding

Scientists at Brookhaven National Laboratory developed a software toolkit that reconstructs and isolates neutrino data in 3D. This software directly enabled the long-awaited findings from the MicroBooNE experiment released today by Fermilab in four complementary analyses. The Wire-Cell team at Brookhaven Lab led one of the four analyses—the most sensitive analysis of the electron-neutrino interaction. Some components of the Wire-Cell toolkit were also used in the other three analyses.

Basic to Breakthrough: How Exploring the Building Blocks of the Universe Sets the Foundation for Innovation

Particle physics peers into the mysteries of our cosmos while opening the door to future technologies. Research into the Higgs boson, dark energy, and quantum physics reveals insights into the universe and enables innovation in other fields.

Rutgers Expert Available to Discuss Supernova Discovery

New Brunswick, N.J. (April 21, 2021) – Rutgers University–New Brunswick astrophysicist John P. (Jack) Hughes is available for interviews on a supernova (exploding star) discovery published today in the journal Nature. The discovery, made with NASA’s Chandra X-ray Observatory, features…

Scientists Say Farewell to Daya Bay Site, Proceed with Final Data Analysis

The Daya Bay Reactor Neutrino Experiment collaboration – which made a precise measurement of an important neutrino property eight years ago, setting the stage for a new round of experiments and discoveries about these hard-to-study particles – has finished taking data. Though the experiment is formally shutting down, the collaboration will continue to analyze its complete dataset to improve upon the precision of findings based on earlier measurements.

90 Years of Neutrino Science

Berkeley Lab has a long history of participating in neutrino experiments and discoveries in locations ranging from a site 1.3 miles deep at a nickel mine in Ontario, Canada, to an underground research site near a nuclear power complex northeast of Hong Kong, and a neutrino observatory buried in ice near the South Pole.

Researchers validate theory that neutrinos shape the universe

The effect that nearly massless, subatomic particles called neutrinos have on the formation of galaxies has long been a cosmological mystery — one that physicists have sought to measure since discovering the particles in 1956.But an international research team has created cosmological simulations that accurately depict the role of neutrinos in the evolution of the universe in a study recently published in The Astrophysical Journal.

Q&A: How machine learning helps scientists hunt for particles, wrangle floppy proteins and speed discovery

At the Department of Energy’s SLAC National Accelerator Laboratory, machine learning is opening new avenues to advance the lab’s unique scientific facilities and research.

New NSF Physics Frontier Center Will Focus on Neutron Star Modeling in ‘Gravitational Wave Era’

A new Physics Frontier Center at UC Berkeley, supported by the National Science Foundation, expands the reach and depth of existing capabilities on campus and at neighboring Berkeley Lab in modeling one of the most violent events in the universe: the merger of neutron stars and its explosive aftermath.

Scientists Successfully Demonstrate a New Experiment in the Search for Theorized ‘Neutrinoless’ Process

Nuclear physicists affiliated with Berkeley Lab played a leading role in analyzing data for a demonstration experiment in France that has achieved record precision for a specialized detector material.

CUORE Underground Experiment in Italy Carries on Despite Pandemic

As the COVID-19 outbreak took hold in Italy, researchers working on a nuclear physics experiment called CUORE at an underground laboratory in central Italy scrambled to keep the ultrasensitive experiment running and launch new tools and rules for remote operations.

Researchers home in on extremely rare nuclear process

A hypothetical nuclear process known as neutrinoless double beta decay ought to be among the least likely events in the universe. Now the international EXO-200 collaboration, which includes researchers from the Department of Energy’s SLAC National Accelerator Laboratory, has determined just how unlikely it is: In a given volume of a certain xenon isotope, it would take more than 35 trillion trillion years for half of its nuclei to decay through this process – an eternity compared to the age of the universe, which is “only” 13 billion years old.