People of Argonne’s history: A look at leaders who made Argonne what it is today

Since its founding, Argonne has employed and partnered with innovators whose contributions have dramatically pushed the frontiers of our understanding and improved the world.

Basic to Breakthrough: How Exploring the Building Blocks of the Universe Sets the Foundation for Innovation

Particle physics peers into the mysteries of our cosmos while opening the door to future technologies. Research into the Higgs boson, dark energy, and quantum physics reveals insights into the universe and enables innovation in other fields.

Uncovering Hidden Local States in a Quantum Material

States of local broken symmetry at high temperature—observed in several materials, including one with a metal-insulator transition, an iron-based superconductor, and an insulating mineral part of the Earth’s upper mantle—may enable the technologically relevant properties arising at much-lower temperature.

Correlated errors in quantum computers emphasize need for design changes

Quantum computers could outperform classical computers at many tasks, but only if the errors that are an inevitable part of computational tasks are isolated rather than widespread events. Now, researchers at the University of Wisconsin–Madison have found evidence that errors are correlated across an entire superconducting quantum computing chip — highlighting a problem that must be acknowledged and addressed in the quest for fault-tolerant quantum computers.

5th cohort of five innovators selected for Chain Reaction Innovations program

Five new innovators will be joining Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, as part of the elite program’s fifth cohort to develop clean energy startups that will reduce greenhouse gas emissions and increase U.S. competitiveness in emerging energy technologies.

Mapping the Electronic States in an Exotic Superconductor

Scientists mapped the electronic states in an exotic superconductor. The maps point to the composition range necessary for topological superconductivity, a state that could enable more robust quantum computing.

Argonne’s 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

The Department of Energy’s Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.

FSU researchers enhance quantum machine learning algorithms

A Florida State University professor’s research could help quantum computing fulfill its promise as a powerful computational tool. William Oates, the Cummins Inc. Professor in Mechanical Engineering and chair of the Department of Mechanical Engineering at the FAMU-FSU College of Engineering, and postdoctoral researcher Guanglei Xu found a way to automatically infer parameters used in an important quantum Boltzmann machine algorithm for machine learning applications.

DOE Announces $30 Million for Quantum Information Science to Tackle Emerging 21st Century Challenges

The U.S. Department of Energy (DOE) today announced plans to provide $30 million for Quantum Information Science (QIS) research that helps scientists understand how nature works on an extremely small scale—100,000 times smaller than the diameter of a human hair. QIS can help our nation solve some of the most pressing and complex challenges of the 21st century, from climate change to national security.

Quantum computing: when ignorance is wanted

Quantum technologies for computers open up new concepts of preserving the privacy of input and output data of a computation. Scientists from the University of Vienna, the Singapore University of Technology and Design and the Polytechnic University of Milan have shown that optical quantum systems are not only particularly suitable for some quantum computations, but can also effectively encrypt the associated input and output data.

Applying Quantum Computing to a Particle Process

A team of researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) used a quantum computer to successfully simulate an aspect of particle collisions that is typically neglected in high-energy physics experiments, such as those that occur at CERN’s Large Hadron Collider.

Argonne Training Program on Extreme-Scale Computing seeks applications for 2021

ATPESC provides in-depth training on using supercomputers, including next-generation exascale systems, to facilitate breakthrough science and engineering.

Designing Materials from First Principles with Yuan Ping

The UC Santa Cruz professor uses computing resources at Brookhaven Lab’s Center for Functional Nanomaterials to run calculations for quantum information science, spintronics, and energy research.

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy’s Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. The discovery was made in a category of topological materials that holds great promise for spintronics, topological effect transistors, and quantum computing.

Eight ways Argonne advanced science in 2020

Throughout 2020, Argonne answered fundamental science questions and provided solutions for the world.

The Room-Temperature Superconductor Arrives at Last

For the first time since superconductivity was discovered in 1911, scientists have created the world’s first superconductor that works at room temperature. To do so, they engineered a new material never before found on earth using a photochemical process to create a starting framework of hydrogen-rich materials. The finding has important implications for quantum computing and energy storage and production.

Virtual reality: ALCF’s remote interns tackle real-world computing projects

The Argonne Leadership Computing Facility’s internship program went virtual this year, providing students with an opportunity to work on real-world research projects that address issues at the forefront of scientific computing.

Making 3-D Nanosuperconductors with DNA

Scientists developed a platform for making 3-D superconducting nano-architectures with a prescribed organization.

Fermilab is partner in Quantum Science Center based at Oak Ridge National Laboratory

Fermilab plays a key role in the Quantum Science Center, led by Oak Ridge National Laboratory. The center unites that Oak Ridge’s powerhouse capabilities in supercomputing and materials science with Fermilab’s world-class high-energy physics instrumentation and measurement expertise and facilities. Drawing on their experience building and operating experiments in cosmology and particle physics and in quantum information science, the Fermilab team is engaging in QSC efforts to develop novel, advanced quantum technologies.

Know When to Unfold ’Em: Study Applies Error-Reducing Methods from Particle Physics to Quantum Computing

Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Virtual Argonne training program prepares researchers for extreme-scale computing

The annual Argonne Training Program on Extreme-Scale Computing went virtual this year, providing two weeks of instruction to ready attendees for science in the exascale era.

Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing, Northwestern University, Ames Laboratory, NASA, INFN and additional partners

Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative. The initiative provides the new Superconducting Quantum Materials and Systems Center — based at Fermilab and comprising 20 partner institutions — $115 million over five years with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center will also develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.

New $115 Million Quantum Systems Accelerator to Pioneer Quantum Technologies for Discovery Science

The Berkeley Lab-led center will forge the technological solutions needed to harness quantum information science for discoveries that benefit the world. It will also energize the nation’s research community to ensure U.S. leadership in quantum R&D and accelerate the transfer of technologies from the lab to the marketplace.

Brookhaven Lab to Lead Quantum Research Center

The U.S. Department of Energy Office of Science has selected Brookhaven National Laboratory to lead one of five National Quantum Information Science Research Centers. Through hardware-software co-design, the center—called the Co-design Center for Quantum Advantage—will advance quantum computing.

Scientists use reinforcement learning to train quantum algorithm

Scientists are investigating how to equip quantum computers with artificial intelligence and machine learning approaches.

Solving materials problems with a quantum computer

Scientists at Argonne and the University of Chicago have developed a method paving the way to using quantum computers to simulate realistic molecules and complex materials. They tested the method on a quantum simulator and IBM quantum computer.

Argonne conducts largest-ever simulation of flow inside an internal combustion engine

Groundbreaking simulation provides data that could help manufacturers create greener engines.

‘Blinking” Crystals May Convert CO2 into Fuels

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

Six Argonne researchers receive DOE Early Career Research Program awards

Argonne scientists Michael Bishof, Maria Chan, Marco Govini, Alessandro Lovato, Bogdan Nicolae and Stefan Wild have received funding for their research as part of DOE’s Early Career Research Program.

Fermilab scientists publish quantum computing course for high school students

Quantum computing will affect the future of every area of science, creating the need for a quantum-fluent workforce. In collaboration with two high school teachers, a group of Fermilab theorists has developed a quantum computing course for high school students. With this course, Fermilab scientists are breaking new ground in both quantum computing research and supporting the competitiveness of the STEM workforce in the quantum era.

Renowned scientist to head new research for plasma applications in industry and quantum information science

The Princeton Plasma Physics Laboratory has appointed David Graves, an internationally known chemical engineer, to head a new research enterprise that will explore plasma applications in semiconductor manufacturing and the next generation of super-fast quantum computers.