Oxide Interfaces Put New Twist on Electron Spins

Electrons in magnetic solids feel each other as an effective magnetic field that forces the electrons’ spins to align. If the arrangement of atoms is not fully symmetric, an additional magnetic force known as Dzyaloshinskii-Moriya Interaction (DMI) can emerge, forcing the spins to reorient and form whirling patterns called skyrmions. Researchers joined two different materials to enable skyrmion generation.

The Spintronics Technology Revolution Could Be Just a Hopfion Away

A research team co-led by Berkeley Lab has created and observed quasiparticles called 3D hopfions at the nanoscale (billionths of a meter) in a magnetic system. The discovery could advance high-density, high-speed, low-power, yet ultrastable magnetic memory “spintronics” devices.

Magnetism Meets Topology on a Superconductor’s Surface

Scientists have found an energy band gap—an energy range where no electrons are allowed—opens at a point where two allowed energy bands intersect on the surface of an iron-based superconductor. This unusual electronic energy structure could be used for quantum information science and electronics.