Scientists discover superconductivity and charge density waves are intrinsically interconnected at the nanoscopic level, a new understanding that could help lead to the next generation of electronics and computers.

news, journals and articles from all over the world.
Scientists discover superconductivity and charge density waves are intrinsically interconnected at the nanoscopic level, a new understanding that could help lead to the next generation of electronics and computers.
Scientists have developed a new theoretical model for preparing particle accelerator structures made of niobium metal. The model predicts how oxygen in the thin oxide layer on the surface of the niobium metal moves deeper into the metal during heat treatment. Tests indicate that the treatment should improve accelerator structure performance and make accelerators easier to build.
Scientists using the Summit supercomputer to study superconductors found that negative particles in the superconductors interact strongly with phonons in the materials. This interaction leads to sudden changes in the materials’ behavior, explaining how certain copper-based superconductors work. The findings may lead to a new class of superconducting materials that work at relatively warm temperatures for efficient future electronic devices.
Are new nickelate superconductors close kin to the original high-temperature superconductors, the cuprates? The first study of their magnetic properties says the answer is yes. Scientists from SLAC, Stanford and Diamond Light Source found important similarities but also subtle differences between the two.
A team performed simulations on the Summit supercomputer and found that electrons in cuprates interact with phonons much more strongly than was previously thought, leading to experimentally observed “kinks” in the relationship between an electron’s energy and the momentum it carries.
Florida State University researchers have discovered a novel way to improve the performance of electrical wires used as high-temperature superconductors (HTS). Researchers used high-resolution scanning electron microscopy to understand how processing methods influence grains in bismuth-based superconducting wires (known as Bi-2212).
Research has shown that the topology of the electronic states in a Weyl semimetal can leave fingerprints on their phonon properties. This happens because of a type of electron-phonon interaction called the Kohn anomaly that impacts how electrons screen phonons through a material. This instability can lead to new electronic properties in materials.
Iowa State’s Jigang Wang and a team of researchers have discovered a form of the famous Higgs boson — subject of a groundbreaking search at the Large Hadron Collider — in an iron-based superconductor. The Higgs mode can be accessed and controlled by light flashing at trillions of pulses per second.
In AIP Advances, researchers describe how to exploit DNA origami as a platform to build superconducting nanoarchitectures. The structures they built are addressable with nanometric precision that can be used as a template for 3D architectures that are not possible today via conventional fabrication techniques. Inspired by previous works using the DNA molecule as a template for superconducting nanowires, the group took advantage of a recent bioengineering advance known as DNA origami to fold DNA into arbitrary shapes.
The American Physical Society has selected physicist Ivan Bozovic of the U.S. Department of Energy’s Brookhaven National Laboratory as a co-recipient of the 2021 James C. McGroddy Prize for New Materials. Bozovic and his collaborators were recognized “For pioneering the atomic-layer-by-layer synthesis of new metastable complex-oxide materials, and the discovery of resulting novel phenomena.”
UB’s Eva Zurek, a theoretical chemist, is an expert on high-pressure chemistry and the search for superconductors BUFFALO, N.Y. — After decades of hunting, scientists recently announced the discovery of a room-temperature superconductor — an elusive material that conveys electricity with…
Graphene, an extremely thin two-dimensional layer of the graphite used in pencils, buckles when cooled while attached to a flat surface, resulting in beautiful pucker patterns that could benefit the search for novel quantum materials and superconductors, according to Rutgers-led research in the journal Nature. Quantum materials host strongly interacting electrons with special properties, such as entangled trajectories, that could provide building blocks for super-fast quantum computers. They also can become superconductors that could slash energy consumption by making power transmission and electronic devices more efficient.
The U.S. Department of Energy awarded scientists at the Florida State University-headquartered National High Magnetic Field Laboratory $1.5 million to develop more efficient, robust superconductors that could lead to powerful particle accelerators and new discoveries about the universe.
Lawrence Livermore National Laboratory (LLNL) researchers, in collaboration with Pennsylvania State University (PSU) and Idaho National Laboratory (INL), have designed a new process, based on a naturally occurring protein, that could extract and purify rare earth elements (REE) from low-grade sources. It could offer a new avenue toward a more diversified and sustainable REE sector for the United States. The protein, lanmodulin, enables a one-step extraction and purification of (REE)s from complex metal mixtures, including electronic waste and coal byproducts.
Scientists studying high-Tc superconductors at the U.S. Department of Energy’s Brookhaven National Laboratory have definitive evidence for the existence of a state of matter known as a pair density wave–first predicted by theorists some 50 years ago. Their results show that this phase coexists with superconductivity in a well-known bismuth-based copper-oxide superconductor.
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.
Researchers used a scanning tunneling microscope to “see” the electron interactions and pairings at the heart of twisted bilayer graphene’s novel properties.
It represents an entirely new type of ground state for transition metal oxides, and opens new directions for experiments and theoretical studies of how superconductivity arises and how it can be optimized in this system and possibly in other compounds.