New Phenomena for the Design of Future Quantum Devices

Research has shown that the topology of the electronic states in a Weyl semimetal can leave fingerprints on their phonon properties. This happens because of a type of electron-phonon interaction called the Kohn anomaly that impacts how electrons screen phonons through a material. This instability can lead to new electronic properties in materials.

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy’s Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. The discovery was made in a category of topological materials that holds great promise for spintronics, topological effect transistors, and quantum computing.