Researchers capture the coordinated dance between electrons and nuclei in a light-excited molecule

Using SLAC’s high-speed “electron camera,” scientists simultaneously captured the movements of electrons and nuclei in a light-excited molecule. This marks the first time this has been done with ultrafast electron diffraction, which scatters a powerful beam of electrons off materials to pick up tiny molecular motions.

Read more

Scientists Have Discovered the Origins of the Building Blocks of Life

Rutgers researchers have discovered the origins of the protein structures responsible for metabolism: simple molecules that powered early life on Earth and serve as chemical signals that NASA could use to search for life on other planets. Their study, which predicts what the earliest proteins looked like 3.5 billion to 2.5 billion years ago, is published in the journal Proceedings of the National Academy of Sciences.

Read more

How a Magnet Could Help Boost Understanding of Superconductivity

Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity. A Rutgers co-authored study of the unusual ferromagnetic material appears in the journal Nature.

Read more

Physicists Make Graphene Discovery that Could Help Develop Superconductors

When two mesh screens are overlaid, beautiful patterns appear when one screen is offset. These “moiré patterns” have long intrigued artists, scientists and mathematicians and have found applications in printing, fashion and banknotes. Now, a Rutgers-led team has paved the way to solving one of the most enduring mysteries in materials physics by discovering a moiré pattern in graphene, where electrons organize themselves into stripes, like soldiers in formation.

Read more