New research solves Parker Solar Probe’s solar switchbacks surprise

In newly published research, scientists have for the first time modeled the nature of solar switchbacks – the large and long-duration isolated velocity spikes in the solar wind that surprised researchers when data arrived from the Solar Wind Electrons Alphas and Protons (SWEAP) instruments aboard NASA’s Parker Solar Probe (PSP).

Read more

UCI, others see agriculture as major source of increase in atmospheric nitrous oxide

Irvine, Calif., Oct. 8, 2020­ – An international team of researchers – including Earth system scientists at the University of California, Irvine – recently completed the most thorough review yet of nitrous oxide from emission to destruction in the planet’s atmosphere. In addition to confirming that the 20 percent increase in the amount of the greenhouse gas since the start of the Industrial Revolution can be totally attributed to humans, the team expressed doubt about the ability to reduce emissions or mitigate their future impacts.

Read more

Testing time for pills in space

Pills are being sent into space to test how they cope with the rigours of one of the harshest environments known.
The University of Adelaide is studying how exposure to microgravity and space radiation affects the stability of pharmaceutical tablet formulations. Two separate missions will send science payloads into orbit around Earth: the first will test how tablets cope with the environment inside the International Space Station (ISS) U.S. National Laboratory. The second mission scheduled for early 2021, will test how tablets cope outside the ISS.

Read more

How to Get a Handle on Carbon Dioxide Uptake by Plants

How much carbon dioxide, a pivotal greenhouse gas behind global warming, is absorbed by plants on land? It’s a deceptively complicated question, so a Rutgers-led group of scientists recommends combining two cutting-edge tools to help answer the crucial climate change-related question.

Read more

Hubble Captures Crisp New Portrait of Jupiter’s Storms

More massive than all the other planets combined, Jupiter truly is the king of our solar system. The swirling clouds, arranged in colorful, banded structures, change from year to year. The rich colors are produced by trace compounds in Jupiter’s predominantly hydrogen/helium atmosphere. Hurricane-force winds propel these clouds, and upwelling currents are ablaze with lightning bolts far more powerful than those seen on Earth.

The Hubble Space Telescope serves as a “weather satellite” for monitoring Jupiter’s stormy weather. The iconic Great Red Spot, a storm big enough to swallow Earth, shows that it’s shrinking a little in the Hubble images, but it still dominates the entire southern atmosphere, plowing through the clouds like a cargo ship.

Hubble astronomers patiently wait to get close-up snapshots as Earth make its nearest annual approach to Jupiter – an astronomical alignment called an opposition, when Jupiter is on the opposite side of the Earth from the Sun.

Read more

Making space weather forecasts faster and better

To improve the ability to forecast space weather, a multidisciplinary team of researchers, including Professor Boris Kramer at the University of California San Diego, received $3.1 million from the National Science Foundation. The researchers, led by Professor Richard Linares at the Massachusetts Institute of Technology, will also work on speeding up the forecasting abilities that are currently available.

Read more

China’s ecological restoration projects deplete terrestrial water stores

Irvine, Calif., Sept. 10, 2020 – Through concerted, policy-driven efforts, China has converted large swaths of desert into grassland over the past few decades, but this success has come at a cost. In a study published recently in Nature Sustainability, scientists at the University of California, Irvine report that the Asian nation’s environmental reclamation programs have substantially diminished terrestrially stored water.

Read more

Hubble Observations Suggest a Missing Ingredient in Dark Matter Theories

Astronomers using Hubble and the VLT have found that something may be missing from the theories of how dark matter behaves. This missing ingredient may explain why they have uncovered an unexpected discrepancy between observations of the dark matter concentrations in a sample of massive galaxy clusters and theoretical computer simulations of how dark matter should be distributed in clusters. The new findings indicate that small-scale concentrations of dark matter produce lensing effects that are 10 times stronger than expected.

Read more