How did the Butterfly Nebula get its wings? It’s complicated

Something is amiss in the Butterfly Nebula. When astronomers compared images from 2009 & 2020, they saw dramatic changes in its “wings.” Powerful winds are driving complex alterations of nebular material. It’s unknown how such activity is possible in what should be a “largely moribund star with no remaining fuel.”

Old and new stars paint very different pictures of the Triangulum Galaxy

Scientists have discovered something unexpected about the Triangulum galaxy: In this satellite galaxy, a close companion of the much larger Andromeda galaxy, old and new stars occur in separate parts of the its structure, something not seen in galaxies like our own and so far not reporter for other satellite galaxies.

ALMA gets front-row seat to an ongoing star-formation standoff in the Large Magellanic Cloud

While using the Atacama Large Millimeter/submillimeter Array (ALMA) to observe large star-forming regions in the Large Magellanic Cloud (LMC), scientists discovered a turbulent push-and-pull dynamic in the star-forming region, 30 Doradus. Observations revealed that despite intense stellar feedback, gravity is shaping the molecular cloud, and against scientific odds, is driving the ongoing formation of young, massive stars. The observations were presented today in a press conference at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California, and are published in The Astrophysical Journal (ApJ).

Cosmic Rays May Be Key to Understanding Galactic Dynamics

While moving around within the gas in the interstellar medium, cosmic rays kickstart the background protons, which causes a collective plasma wave movement akin to ripples on a lake. The big question is how cosmic rays deposit their momentum into the background plasma. In Physics of Plasmas, plasma astrophysicists review recent developments within the field of studying the streaming instability triggered by cosmic rays, which likely have more impacts on galactic dynamics and the star formation cycle than previously known.

36 Dwarf Galaxies Had Simultaneous “Baby Boom” of New Stars

Three dozen dwarf galaxies far from each other had a simultaneous “baby boom” of new stars, an unexpected discovery that challenges current theories on how galaxies grow and may enhance our understanding of the universe. Galaxies more than 1 million light-years apart should have completely independent lives in terms of when they give birth to new stars. But galaxies separated by up to 13 million light-years slowed down and then simultaneously accelerated their birth rate of stars, according to a Rutgers-led study published in the Astrophysical Journal.