3D Ice Printing can Create Artificial Blood Vessels in Engineered Tissue

Over 100,000 individuals in the United States are currently in need of organ transplants. The demand for organs, such as hearts, kidneys, and livers, far exceeds the available supply and people sometimes wait years to receive a donated organ.

RESEARCH ALERT: The New Geography of the Gut

Investigators from Cedars-Sinai; the University of California, San Francisco (UCSF); Harvard University; and the Weizmann Institute of Science in Israel conducted a study to determine where individual nutrients are absorbed in the small intestine. For the first time, they identified the molecular markers that define five distinct intestinal regions.

Wake Forest Institute for Regenerative Medicine Awarded $160 Million 10-Year U.S. National Science Foundation Regional Innovation Engines Grant

The Wake Forest Institute for Regenerative Medicine (WFIRM) is the recipient of an inaugural U.S. National Science Foundation (NSF) Engines Program award. The NSF Engines: Piedmont Triad Regenerative Medicine Engine is a regional project that provides an innovation ecosystem to stimulate workforce development, job creation, and economic growth through the development of technologies that benefit the emerging industry.

Wake Forest Institute for Regenerative Medicine (WFIRM) Secures National Science Foundation (NSF) Grant Renewal for Summer Undergraduate Research Program

Building upon the success of its previous REU program (Award #1659663, 2018-2022), WFIRM’s renewed grant has a specific focus on growing the increasing the engagement of underrepresented minority groups, women, and non-traditional students, including students attending 2- and 4-year universities.

UC Irvine study exposes risks of direct-to-consumer stem cell, exosome COVID-19 therapy ads

Irvine, Calif., Oct. 26, 2023 — A study from the University of California, Irvine has revealed that in 2022, 38 North American businesses used direct-to-consumer advertising to promote unproven stem cell interventions and exosome products as purported treatments and preventatives for COVID-19. Collectively, these organizations operated or facilitated access to 60 clinics – with 24 in the U.

WFIRM bioprinting research makes history when it soars to the ISS

The Wake Forest Institute for Regenerative Medicine (WFIRM) will make history this month when the first bioprinted solid tissue constructs soar to the International Space Station (ISS) on board the next all private astronaut mission by commercial space leader Axiom Space.

Mount Sinai Launches Institute for Regenerative Medicine

Institute, including three new centers, will lead research to foster novel discoveries and explore new treatments for a range of diseases from leukemia to Alzheimer’s disease.

Eliksa Therapeutics launched with University of Utah’s commercial and clinical-stage regenerative medicine technology

Eliksa Therapeutics, a regenerative medicine company developing novel therapeutics for a range of debilitating diseases, announced today it has launched with investments from the University of Utah (U) and Militia Hill Ventures (MHV) to develop and commercialize multiple clinical programs using the regenerative medicine technology developed at the U.

Scientists develop blueprint for turning stem cells into sensory interneurons

Key takeaways:
• Just like the real thing. The stem cell–derived interneurons, which play a role in sensations like touch and pain, are indistinguishable from their real-life counterparts in the body.
• Tomorrow’s therapies. In addition to potential treatments for injury-related sensation loss, the discovery could lead to new methods for screening drugs for chronic pain.
• Moving forward. While stem cells from mice were used in the research, scientists are now working to replicate the findings with human cells.

Recharging cartilage after knee damage

Osteoarthritis – a painful condition that results from the deterioration of the cartilage in our joints – affects millions of people worldwide. To combat this issue, NIBIB-funded researchers are developing an implantable, biodegradable film that helps to regenerate the native cartilage at the site of damage. Their study, performed in rabbits, could be an initial, important step in the establishment of a new treatment for this common condition.

Smidt Heart Institute: Annual Report Highlights

The 2022 Annual Report from the Smidt Heart Institute at Cedars-Sinai is available now, detailing the latest research and medical achievements by the expert team ranked No. 1 for cardiology and cardiac surgery in California by U.S. News & World Report.

Businesses selling non-FDA-approved stem cell products grew four-fold in five years, UCI study says

More than four times as many businesses and clinics than were identified in 2016 are selling stem cell products not approved by the U.S. Food and Drug Administration and lack convincing evidence of safety and efficacy, according to a five-year study conducted by University of California, Irvine Program in Public Health professor of health, society and behavior Leigh Turner. The analysis appears online in the journal Cell Stem Cell.

UCI receives 5-year, $5 million CIRM award for training of diverse researchers

The University of California, Irvine has received a five-year, $5 million award from the California Institute for Regenerative Medicine to support a comprehensive doctoral, postdoctoral and clinical researcher training program to prepare the current and next generation of leaders in stem cell biology, gene therapy and regenerative medicine.

RegeneratOR Workforce Development Receives NSF Award

With the recent announcement of the RegeneratOR Test Bed to support regenerative medicine start up companies, the Wake Forest Institute for Regenerative Medicine (WFIRM) and the RegenMed Development Organization (RemDO) are embarking on the next step – to help create the future workforce.

RegeneratOR Test Bed to Launch Start Ups, Advance Regenerative Medicine Ecosystem

The RegenMed Development Organization (ReMDO), a non-profit foundation headquartered in Winston-Salem, NC, and dedicated to advancing the regenerative medicine field nationwide, and the Wake Forest Institute for Regenerative Medicine (WFIRM), the largest regenerative medicine institute in the world, announce the launch of the RegeneratOR Test Bed.

ACSM Annual Meeting Research Highlights for June 3

ACSM’s comprehensive sports medicine and exercise science conference takes place virtually from June 1 to 5 with programming covering the science, practice, public health and policy aspects of sports medicine, exercise science and physical activity.

Research Highlights from 2021 ACSM Virtual Annual Meeting: Exercise in Regenerative Medicine

The 2021 Virtual ACSM Basic Science World Congress focuses on regenerative medicine. Chaired by Marcas M. Bamman, Ph.D., FACSM, from the University of Alabama at Birmingham, this world congress brings together researchers to discuss cutting-edge science in this rapidly developing field.

Journalists: Be our guest at the 2021 Virtual ACSM Research Conference

Gain story ideas and learn about cutting-edge science at ACSM’s comprehensive sports medicine and exercise science conference that covers the science, practice, public health and policy aspects of sports medicine, exercise science and physical activity.

Helping humans heal

In a lab on the upper floors of Engineering Hall, something is growing. It’s not a plant. And it’s not an animal. What Ronke Olabisi is growing in her lab is us. From new skin and retinal tissue to hearts and livers, she’s developing the tools to rebuild and repair the human body. A UCI assistant professor of biomedical engineering, Olabisi has been working with regenerative tissue for the better part of seven years, using a hydrogel based on polyethylene glycol diacrylate.

UCI biomedical engineers spotlight disparities in knee and jaw joint treatments

Irvine, Calif., May 5, 2021 – If you haven’t had knee surgery, you may have a friend or relative who has. But do you know anyone who has had an operation on their jaw? Although the temporomandibular joint is crucial to speaking, chewing and even breathing, treatments for TMJ disorders are far less common than those for the knee.

Mayo Clinic preclinical discovery triggers wound healing, skin regeneration

Difficult-to-treat, chronic wounds in preclinical models healed with normal scar-free skin after treatment with an acellular product discovered at Mayo Clinic. Derived from platelets, the purified exosomal product, known as PEP, was used to deliver healing messages into cells of preclinical animal models of ischemic wounds. The Mayo Clinic research team documented restoration of skin integrity, hair follicles, sweat glands, skin oils and normal hydration.

Ischemic wounds occur when arteries are clogged or blocked, preventing important nutrients and oxygen from reaching the skin to drive repair. This groundbreaking study titled, “TGF-β Donor Exosome Accelerates Ischemic Wound Healing,” is published in Theranostics.

Audacious projects develop imaging technology to aid eye tissue regeneration

As regenerative therapies for blinding diseases move closer to clinical trials, the National Eye Institute’s functional imaging consortium, a part of the NEI Audacious Goals Initiative (AGI), is pioneering noninvasive technologies to monitor the function of the retina’s light-sensing neurons and their connections to the brain.

Evan Snyder named Fellow of the American Institute for Medical and Biological Engineering

The American Institute for Medical and Biological Engineering (AIMBE) has elected to its College of Fellows Evan Y. Snyder, M.D., Ph.D., professor and founding director of the Center for Stem Cells and Regenerative Medicine at Sanford Burnham Prebys Medical Discovery Institute. Snyder was nominated, reviewed, and elected by his peers and members of the College of Fellows for his seminal contributions to regenerative medicine.

Advances in Stem Cell Science and Regenerative Medicine Highlighted in New Regenerative Medicine Essentials Course Co-Located with 2021 World Stem Cell Summit

Leaders in stem cell science and regenerative medicine will combine two separate courses into one in June 2021.

Scientists use gene therapy and a novel light-sensing protein to restore vision in mice

A newly developed light-sensing protein called the MCO1 opsin restores vision in blind mice when attached to retina bipolar cells using gene therapy. The National Eye Institute, part of the National Institutes of Health, provided a Small Business Innovation Research grant to Nanoscope, LLC for development of MCO1. The company is planning a U.S. clinical trial for later this year.

AAOS Advances Biologics Initiative with Innovative Dashboard

The American Academy of Orthopaedic Surgeons (AAOS) continues to demonstrate its commitment to advancing the quality of musculoskeletal care in a fully transparent and scientific way. Debuting today as a new member benefit, the AAOS Biologics Dashboard is a dynamic online tool designed to help orthopaedic surgeons navigate the approval status of biologic-based interventions. The development of the AAOS Biologics Dashboard is just one of several efforts within the Academy’s Biologics Initiative that offers evidence-based guidance to the musculoskeletal health community. An additional effort is the revision of two biologics-related position statements, recently approved by the AAOS Board of Directors.

Exosome treatment improves recovery from heart attacks in a preclinical study

Research in pigs shows that using the exosomes naturally produced from a mix of heart muscle, endothelial and smooth muscle cells — all derived from human induced pluripotent stem cells — yields regenerative benefits equivalent to the injected human induced pluripotent stem cell-cardiac cells.

Could a tiny fish hold the key to curing blindness?

Imagine this: A patient learns that they are losing their sight because an eye disease has damaged crucial cells in their retina. Then, under the care of their doctor, they simply grow some new retinal cells, restoring their vision.

Although science hasn’t yet delivered this happy ending, researchers are working on it – with help from the humble zebrafish. When a zebrafish loses its retinal cells, it grows new ones. This observation has encouraged scientists to try hacking the zebrafish’s innate regenerative capacity to learn how to treat human disease. That is why among the National Eye Institute’s 1,200 active research projects, nearly 80 incorporate zebrafish.

Scientists uncover a novel approach to treating Duchenne muscular dystrophy

Scientists at Sanford Burnham Prebys, Fondazione Santa Lucia IRCCS, and Università Cattolica del Sacro Cuore in Rome have shown that pharmacological (drug) correction of the content of extracellular vesicles released within dystrophic muscles can restore their ability to regenerate muscle and prevent muscle scarring. The study, published in EMBO Reports, reveals a promising new therapeutic approach for Duchenne muscular dystrophy (DMD), an incurable muscle-wasting condition.