This Injectable Hydrogel Mitigates Damage to the Right Ventricle of the Heart

An injectable hydrogel can mitigate damage to the right ventricle of the heart with chronic pressure overload, according to a new study published March 6 in Journals of the American College of Cardiology: Basic to Translational Science.  The study, by a research team from the University of California San Diego, Georgia Institute of Technology and Emory University, was conducted in rodents.

Five Cutting-edge Advances in Biomedical Engineering and Their Applications in Medicine

Bridging precision engineering and precision medicine to create personalized physiology avatars. Pursuing on-demand tissue and organ engineering for human health. Revolutionizing neuroscience by using AI to engineer advanced brain interface systems. Engineering the immune system for health and wellness. Designing and engineering genomes for organism repurposing and genomic perturbations.

Device keeps brain alive, functioning separate from body

Researchers led by a team at UT Southwestern Medical Center have developed a device that can isolate blood flow to the brain, keeping the organ alive and functioning independent from the rest of the body for several hours.

These Screen-printed, Flexible Sensors Allow Earbuds to Record Brain Activity and Exercise Levels

Earbuds can be turned into a tool to record the electrical activity of the brain and levels of lactate in the body with two flexible sensors screen-printed onto a flexible surface.

Virtual drug quiets noise in heart tissue images

Researchers at Washington University in St. Louis have developed a new computational approach to removing movement in images of expanding and contracting heart cells and tissues. By computationally removing movement, the algorithm mimics a drug’s action in stopping the heart, without compromising cellular structure or tissue contractility.

Scientists discover unusual ultrafast motion in layered magnetic materials

A team of researchers report a mechanical response across a layered magnetic material tied to changing its electron spin. This response could have important applications in nanodevices requiring ultra-precise and fast motion control.

NIH funds study of ultrasound with genetics to treat brain disorders

Researchers have developed methods to study and manipulate areas of the brain, though many of those methods are restricted by the limited depth that light can reach within the brain. A multidisciplinary team at Washington University in St. Louis plans to overcome that limitation by integrating ultrasound with genetics to precisely modify neurons in the brain.

Why does skin get ’leathery’ after too much sun? Bioengineers examine cellular breakdown

A study from Binghamton University, State University of New York researchers explores how ultraviolet radiation can alter the microstructure of human skin. Particularly affected is collagen, the fibrous protein that binds together tissue, tendon, cartilage and bone throughout our bodies.

Binghamton University and six HBCUs forge New Educational and Research Alliance

In collaboration with the Thurgood Marshall College Fund, Binghamton University, State University of New York has announced a New Educational and Research Alliance (New ERA) with six historically Black colleges and universities (HBCUs): Alabama A&M University, Central State University, Tuskegee University, Prairie-View A&M University, the University of the District of Columbia and Virginia State University.

A New Strategy to Break Through Bacterial Barriers in Chronic Treatment-Resistant Wounds

Researchers in UNC’s School of Medicine’s department of Microbiology and Immunology and the UNC-NC State Joint Department of Biomedical Engineering have developed a new strategy to improve drug-delivery into chronic wounds infections.

CDC-UNC Collaboration Yields Potential Long-term HIV Protection

Since 2017, the lab of Rahima Benhabbour, PhD, MSc, associate professor in the UNC/NCSU Joint Department of Biomedical Engineering, has been working with a research team at the Centers for Disease Control and Prevention (CDC) and others at UNC to develop an injectable implant that can release HIV pre-exposure prophylaxis (PrEP) medications into the body for a long period of time.
Their latest research, published in Nature Communications, shows that the team’s latest formulation can provide up to six months of full protection.

This Groundbreaking Biomaterial Heals Tissues From the Inside Out

A new biomaterial that can be injected intravenously, reduces inflammation in tissue and promotes cell and tissue repair. The biomaterial was tested and proven effective in treating tissue damage caused by heart attacks in both rodent and large animal models. Researchers also provided proof of concept in a rodent model that the biomaterial could be beneficial to patients with traumatic brain injury and pulmonary arterial hypertension.

Positively Charged Nanomaterials Treat Obesity Anywhere You Want

Columbia researchers invent new method to treat obesity by using cationic nanomaterials that can target specific areas of fat and inhibit the unhealthy storage of enlarged fat cells. “Our studies highlight an unexpected strategy to treat visceral adiposity and suggest a new direction of exploring cationic nanomaterials for treating metabolic diseases,” said Columbia Engineering’s Biomedical Engineering Prof Kam Leong, a pioneer in using polycation to scavenge pathogens.

UCI researchers invent a health monitoring wearable that operates without a battery

Irvine, Calif., July 12, 2022 – A new self-powered, wristwatch-style health monitor invented by researchers at the University of California, Irvine can keep track of a wearer’s pulse and wirelessly communicate with a nearby smartphone or tablet – without needing an external power source or a battery. In a paper published recently in the journal Nano Energy, team members in UCI’s Henry Samueli School of Engineering describe their invention, built via 3D printing of nanomaterials on flexible substrates for real-time and wireless monitoring of vital signs.

University of Minnesota technology allows amputees to control a robotic arm with their mind

A team of biomedical engineering researchers and industry collaborators have developed a way to tap into a patient’s brain signals through a neural chip implanted in the arm, effectively reading the patient’s mind and opening the door for less invasive alternatives to brain surgeries.

$2.4 million NIH grant to fund research into better, faster diagnosis of lung nodules

A biomedical engineering professor at Binghamton University, State University of New York has received a $2.4 million grant to develop a faster, less painful way to diagnose malignant solitary pulmonary nodules (SPNs).

“Greening” Biomaterials and Scaffolds Used in Regenerative Medicine

In the biomaterials industry, electrospinning is a ubiquitous fabrication method used to produce nano- to microscale fibrous meshes that closely resemble native tissue architecture. Alas, the process has traditionally used solvents that not only are environmentally hazardous but also a significant barrier to industrial scale-up, clinical translation, and widespread use. But now, Columbia Engineering researchers report that they have developed a “green electrospinning” process that addresses those challenges, from managing environmental risks of volatile solvent storage and disposal at large volumes to meeting health and safety standards during both fabrication and implementation.

New Tool Predicts Sudden Death in Inflammatory Heart Disease

Johns Hopkins University scientists have developed a new tool for predicting which patients suffering from a complex inflammatory heart disease are at risk of sudden cardiac arrest. Published in Science Advances, their method is the first to combine models of patients’ hearts built from multiple images with the power of machine learning.

Tulane spin-out company to develop new treatment for pelvic organ prolapse

The Tulane spin-out BioAesthetics is teaming up with a Tulane biomedical engineering professor to develop a new graft for treating pelvic organ prolapse, which affects millions of women around the world.

BioAesthetics, whose CEO and COO are both Tulane graduates, is collaborating with Tulane researcher Kristin Miller, an associate professor of biomedical engineering whose lab will conduct the testing of the graft.

CUR Engineering Division Announces 2021 Mentoring Awardees, Student Video Competition Winners

The Engineering Division of the Council on Undergraduate Research announces the 2021 recipients of its Mentoring Awards and winners of its Student Video Competition.

UCI-led team develops transplant biomaterial that doesn’t trigger immune response

Irvine, Calif., June 3, 2021 — A multidisciplinary research team led by Jonathan Lakey, Ph.D., professor of surgery and biomedical engineering at the University of California, Irvine, has developed a biomaterial for pancreatic islet transplants that doesn’t trigger the body’s immune response. Based on stem cell technology, hybrid alginate offers a possible long-term treatment for Type 1 diabetes, an autoimmune reaction that destroys pancreatic islets’ beta cells, which regulate blood glucose levels.

Brian Fargo, inXile founder, gives $1 million to advance UCI research for tinnitus treatment

Irvine, Calif., May 19, 2021 — A $1 million gift to the University of California, Irvine from Brian Fargo, founder and studio head of inXile entertainment, will advance efforts to develop a treatment for tinnitus, commonly described as “ringing in the ears.” According to the American Tinnitus Association, an estimated 50 million people in the U.

Helping humans heal

In a lab on the upper floors of Engineering Hall, something is growing. It’s not a plant. And it’s not an animal. What Ronke Olabisi is growing in her lab is us. From new skin and retinal tissue to hearts and livers, she’s developing the tools to rebuild and repair the human body. A UCI assistant professor of biomedical engineering, Olabisi has been working with regenerative tissue for the better part of seven years, using a hydrogel based on polyethylene glycol diacrylate.

Breaching the Blood-Brain Barrier to Deliver Precious Payloads

RNA-based drugs may change the standard of care for many diseases, making personalized medicine a reality. So far these cost-effective, easy-to-manufacture drugs haven’t been very useful in treating brain tumors and other brain disease. But a team of researchers at Georgia Tech and Emory University has shown that a combination of ultrasound and RNA-loaded nanoparticles can temporarily open the protective blood-brain barrier, allowing the delivery of potent medicine to brain tumors.