DNA organization influences the growth of deadly brain tumors in response to neuronal signals

A pioneering study at Umeå University, Sweden, has unveiled that the 3D organization of DNA can influence the progression of the aggressive brain tumour known as glioblastoma. Having identified the factors that glioblastoma uses to respond to neurons by growing and spreading, this discovery paves the way for further research into new treatments for brain tumours.

Cancerous brain tumor cells may be at ‘critical point’ between order and disorder, study suggests

Glioblastoma cells are poised near a “critical point” of order and disorder — meaning, the cells possess some form of large-scale coordination throughout the whole tumor that allows them to respond in practical unison to attempts to kill tumor cells, such as chemotherapy or radiation, a study suggests. Researchers say disrupting the large-scale organization of brain tumors may result in more powerful ways to treat and one day eliminate brain tumors.

Study using novel approach for glioblastoma treatment shows promising results, extending survival

A new international study published in and presented as a late-breaking abstract at the American Association of Neurological Surgeons (AANS) annual conference, shows great promise for patients with glioblastoma. Drs. Farshad Nassiri and Gelareh Zadeh, neurosurgeons and scientists at the University Health Network (UHN) in Toronto, published the results of a Phase 1/2 clinical trial investigating the safety and effectiveness of a novel therapy which combines the injection of an oncolytic virus – a virus that targets and kills cancer cells – directly into the tumour, with intravenous immunotherapy.

Scientists Develop Novel Approach to Enhance Drug Delivery for Brain Tumors in Children

Mount Sinai Health System and Memorial Sloan Kettering Cancer Center researchers have developed a new drug delivery approach that uses nanoparticles to enable more effective and targeted delivery of anti-cancer drugs to treat brain tumors in children.

National Comprehensive Cancer Network Shares New Recommendations for Treating Children with Brain Tumors

Newly-published NCCN Guidelines for Pediatric Central Nervous System Cancers synthesize latest evidence to help care teams ensure children with high-grade gliomas have best possible outcomes; available free at NCCN.org.

Study finds high tumor mutation burden predicts immunotherapy response in some, but not all, cancers

A high rate of genetic mutations within a tumor, known as high tumor mutation burden, was only useful for predicting immunotherapy responses in a subset of cancer types, suggesting that this may not reliably be used as a universal biomarker.

Brain Cancer: UVA IDs Gene Responsible for Deadly Glioblastoma

The discovery of the oncogene responsible for glioblastoma could be the brain tumor’s Achilles’ heel, one researcher says.

Combination Drug Therapy For Childhood Brain Tumors Shows Promise In Laboratory Models

In experiments with human cells and mice, researchers at the Johns Hopkins Kimmel Cancer Center report evidence that combining the experimental cancer medication TAK228 (also called sapanisertib) with an existing anti-cancer drug called trametinib may be more effective than either drug alone in decreasing the growth of pediatric low-grade gliomas. These cancers are the most common childhood brain cancer, accounting for up to one-third of all cases. Low grade pediatric gliomas arise in brain cells (glia) that support and nourish neurons, and current standard chemotherapies with decades-old drugs, while generally effective in lengthening life, often carry side effects or are not tolerated. Approximately 50% of children treated with traditional therapy have their tumors regrow, underscoring the need for better, targeted treatments.