One-dimensional red phosphorous glows in unexpected ways

In a study published in Nature Communications, an international team led by Aalto University researchers has found that fibrous red phosphorous, when electrons are confined in its one-dimensional sub-units, can show large optical responses – that is, the material shows strong photoluminescence under light irradiation. Red phosphorous, like graphene, belongs to a unique group of materials discovered in 2017 called one-dimensional van der Waals (1D vdW) materials.

One-dimensional red phosphorous glows in unexpected ways

In a study published in Nature Communications, an international team led by Aalto University researchers has found that fibrous red phosphorous, when electrons are confined in its one-dimensional sub-units, can show large optical responses – that is, the material shows strong photoluminescence under light irradiation. Red phosphorous, like graphene, belongs to a unique group of materials discovered in 2017 called one-dimensional van der Waals (1D vdW) materials.

Story tips: Sensing oil leaks, 3D prints in space, more fuel from ethanol, Arctic modeling boost, making isotopes faster and nano-enabled microscopy

Story tips: Sensing oil leaks, 3D prints in space, more fuel from ethanol, Arctic modeling boost, making isotopes faster and nano-enabled microscopy

Microspheres Quiver When Shocked

A challenging frontier in science and engineering is controlling matter outside of thermodynamic equilibrium to build material systems with capabilities that rival those of living organisms. Research on active colloids aims to create micro- and nanoscale “particles” that swim through viscous fluids like primitive microorganisms. When these self-propelled particles come together, they can organize and move like schools of fish to perform robotic functions, such as navigating complex environments and delivering “cargo” to targeted locations.

ORNL’s Sergei Kalinin elected Fellow of the Microscopy Society of America

Sergei Kalinin, a scientist and inventor at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the Microscopy Society of America professional society.

ORNL’s superb materials expertise, data and AI tools propel progress

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications

In a study published April 16 in ACS Photonics, University of Wisconsin–Madison researchers fabricated graphene into the smallest ribbon structures to date using a method that makes scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

Quantum material’s subtle spin behavior proves theoretical predictions

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Do You Know the Way to Berkelium, Californium?

Scientists at Berkeley Lab have demonstrated how to image samples of heavy elements as small as a single nanogram. The new approach will help scientists advance new technologies for medical imaging and cancer therapies.

$500,000 grant funds creation of institute to advance AI for materials science

Funds from an NSF $500,000 grant will be used to bring together an interdisciplinary team of researchers with complementary expertise in artificial intelligence (AI) and material science to lay the groundwork for an AI-Enabled Materials Discovery, Design, and Synthesis (AIMS) Institute.

3D-Printed Smart Gel Changes Shape When Exposed to Light

Inspired by the color-changing skin of cuttlefish, octopuses and squids, Rutgers engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes “artificial muscle” and may lead to new military camouflage, soft robotics and flexible displays. The engineers also developed a 3D-printed stretchy material that can reveal colors when light changes, according to their study in the journal ACS Applied Materials & Interfaces.

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin–Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional materials built by a team led by UW–Madison chemistry Professor Song Jin create new properties that scientists can exploit to study quantum physics on the nanoscale.

Q&A: How machine learning helps scientists hunt for particles, wrangle floppy proteins and speed discovery

At the Department of Energy’s SLAC National Accelerator Laboratory, machine learning is opening new avenues to advance the lab’s unique scientific facilities and research.

Toward an Ultrahigh Energy Density Capacitor

Researchers at Berkeley Lab and UC Berkeley have demonstrated that a common material can be processed into a top-performing energy storage material. Their discovery could improve the efficiency, reliability, and robustness of personal electronics, wearable technologies, and car audio systems.

Quantum Materials Quest Could Benefit From Graphene That Buckles

Graphene, an extremely thin two-dimensional layer of the graphite used in pencils, buckles when cooled while attached to a flat surface, resulting in beautiful pucker patterns that could benefit the search for novel quantum materials and superconductors, according to Rutgers-led research in the journal Nature. Quantum materials host strongly interacting electrons with special properties, such as entangled trajectories, that could provide building blocks for super-fast quantum computers. They also can become superconductors that could slash energy consumption by making power transmission and electronic devices more efficient.

‘Blinking” Crystals May Convert CO2 into Fuels

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

Tiny Bubbles Make a Quantum Leap

Researchers at Columbia Engineering and Montana State University have found that placing sufficient strain in a 2D material creates localized states that can yield single-photon emitters. Using sophisticated optical microscopy techniques developed at Columbia over the past 3 years, the team was able to directly image these states for the first time, revealing that even at room temperature they are highly tunable and act as quantum dots, tightly confined pieces of semiconductors that emit light.

2D Semiconductors Found to Be Close-To-Ideal Fractional Quantum Hall Platform

Columbia University researchers report that they have observed a quantum fluid known as the fractional quantum Hall states (FQHS), one of the most delicate phases of matter, for the first time in a monolayer 2D semiconductor. Their findings demonstrate the excellent intrinsic quality of 2D semiconductors and establish them as a unique test platform for future applications in quantum computing.

Harmful Microbes Found on Sewer Pipe Walls

Can antibiotic-resistant bacteria escape from sewers into waterways and cause a disease outbreak? A new Rutgers study, published in the journal Environmental Science: Water Research & Technology, examined the microbe-laden “biofilms” that cling to sewer walls, and even built a simulated sewer to study the germs that survive within.

Summit Helps Predict Molecular Breakups

A team used the Summit supercomputer to simulate transition metal systems—such as copper bound to molecules of nitrogen, dihydrogen, or water—and correctly predicted the amount of energy required to break apart dozens of molecular systems, paving the way for a greater understanding of these materials.

‘Artificial Chemist’ Combines AI, Robotics to Conduct Autonomous R&D

Researchers have developed a technology called “Artificial Chemist,” which incorporates artificial intelligence and an automated system for performing chemical reactions to accelerate R&D and manufacturing of commercially desirable materials.

Liquid metal research invokes ‘Terminator’ film — but much friendlier

Researchers at Binghamton University, State University of New York have developed “the first liquid metal lattice in the world.” The team has created a series of prototypes that return to their shapes when crushed.

Under Pressure: New Bioinspired Material Can ‘Shapeshift’ to External Forces

Inspired by how human bone and colorful coral reefs adjust mineral deposits in response to their surrounding environments, Johns Hopkins researchers have created a self-adapting material that can change its stiffness in response to the applied force. This advancement can someday open the doors for materials that can self-reinforce to prepare for increased force or stop further damage.

How a Magnet Could Help Boost Understanding of Superconductivity

Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity. A Rutgers co-authored study of the unusual ferromagnetic material appears in the journal Nature.

New Software Tests Asphalt Performance More Efficiently

New Brunswick, N.J. (Feb. 26, 2020) – Rutgers University–New Brunswick researchers have created a software tool that more efficiently analyzes how asphalt performs, saving transportation agencies time and money. As performance testing for asphalt pavement has evolved, the focus has shifted…