Quantum material’s subtle spin behavior proves theoretical predictions

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Read more

Do You Know the Way to Berkelium, Californium?

Scientists at Berkeley Lab have demonstrated how to image samples of heavy elements as small as a single nanogram. The new approach will help scientists advance new technologies for medical imaging and cancer therapies.

Read more

$500,000 grant funds creation of institute to advance AI for materials science

Funds from an NSF $500,000 grant will be used to bring together an interdisciplinary team of researchers with complementary expertise in artificial intelligence (AI) and material science to lay the groundwork for an AI-Enabled Materials Discovery, Design, and Synthesis (AIMS) Institute.

Read more

3D-Printed Smart Gel Changes Shape When Exposed to Light

Inspired by the color-changing skin of cuttlefish, octopuses and squids, Rutgers engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes “artificial muscle” and may lead to new military camouflage, soft robotics and flexible displays. The engineers also developed a 3D-printed stretchy material that can reveal colors when light changes, according to their study in the journal ACS Applied Materials & Interfaces.

Read more

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin–Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional materials built by a team led by UW–Madison chemistry Professor Song Jin create new properties that scientists can exploit to study quantum physics on the nanoscale.

Read more

Q&A: How machine learning helps scientists hunt for particles, wrangle floppy proteins and speed discovery

At the Department of Energy’s SLAC National Accelerator Laboratory, machine learning is opening new avenues to advance the lab’s unique scientific facilities and research.

Read more

Toward an Ultrahigh Energy Density Capacitor

Researchers at Berkeley Lab and UC Berkeley have demonstrated that a common material can be processed into a top-performing energy storage material. Their discovery could improve the efficiency, reliability, and robustness of personal electronics, wearable technologies, and car audio systems.

Read more

Quantum Materials Quest Could Benefit From Graphene That Buckles

Graphene, an extremely thin two-dimensional layer of the graphite used in pencils, buckles when cooled while attached to a flat surface, resulting in beautiful pucker patterns that could benefit the search for novel quantum materials and superconductors, according to Rutgers-led research in the journal Nature. Quantum materials host strongly interacting electrons with special properties, such as entangled trajectories, that could provide building blocks for super-fast quantum computers. They also can become superconductors that could slash energy consumption by making power transmission and electronic devices more efficient.

Read more

‘Blinking” Crystals May Convert CO2 into Fuels

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

Read more

Tiny Bubbles Make a Quantum Leap

Researchers at Columbia Engineering and Montana State University have found that placing sufficient strain in a 2D material creates localized states that can yield single-photon emitters. Using sophisticated optical microscopy techniques developed at Columbia over the past 3 years, the team was able to directly image these states for the first time, revealing that even at room temperature they are highly tunable and act as quantum dots, tightly confined pieces of semiconductors that emit light.

Read more

2D Semiconductors Found to Be Close-To-Ideal Fractional Quantum Hall Platform

Columbia University researchers report that they have observed a quantum fluid known as the fractional quantum Hall states (FQHS), one of the most delicate phases of matter, for the first time in a monolayer 2D semiconductor. Their findings demonstrate the excellent intrinsic quality of 2D semiconductors and establish them as a unique test platform for future applications in quantum computing.

Read more

Harmful Microbes Found on Sewer Pipe Walls

Can antibiotic-resistant bacteria escape from sewers into waterways and cause a disease outbreak? A new Rutgers study, published in the journal Environmental Science: Water Research & Technology, examined the microbe-laden “biofilms” that cling to sewer walls, and even built a simulated sewer to study the germs that survive within.

Read more

Summit Helps Predict Molecular Breakups

A team used the Summit supercomputer to simulate transition metal systems—such as copper bound to molecules of nitrogen, dihydrogen, or water—and correctly predicted the amount of energy required to break apart dozens of molecular systems, paving the way for a greater understanding of these materials.

Read more

New method measures temperature within 3D objects

University of Wisconsin–Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography. The method may be useful in applications where traditional temperature probes won’t work, like monitoring semiconductor performance or next-generation nuclear reactors.

Read more

‘Artificial Chemist’ Combines AI, Robotics to Conduct Autonomous R&D

Researchers have developed a technology called “Artificial Chemist,” which incorporates artificial intelligence and an automated system for performing chemical reactions to accelerate R&D and manufacturing of commercially desirable materials.

Read more

Liquid metal research invokes ‘Terminator’ film — but much friendlier

Researchers at Binghamton University, State University of New York have developed “the first liquid metal lattice in the world.” The team has created a series of prototypes that return to their shapes when crushed.

Read more

Under Pressure: New Bioinspired Material Can ‘Shapeshift’ to External Forces

Inspired by how human bone and colorful coral reefs adjust mineral deposits in response to their surrounding environments, Johns Hopkins researchers have created a self-adapting material that can change its stiffness in response to the applied force. This advancement can someday open the doors for materials that can self-reinforce to prepare for increased force or stop further damage.

Read more

How a Magnet Could Help Boost Understanding of Superconductivity

Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity. A Rutgers co-authored study of the unusual ferromagnetic material appears in the journal Nature.

Read more

New Software Tests Asphalt Performance More Efficiently

New Brunswick, N.J. (Feb. 26, 2020) – Rutgers University–New Brunswick researchers have created a software tool that more efficiently analyzes how

Read more

Superior “Bio-Ink” for 3D Printing Pioneered

Rutgers biomedical engineers have developed a “bio-ink” for 3D printed materials that could serve as scaffolds for growing human tissues to repair or replace damaged ones in the body. Their study was published in the journal Biointerphases.

Read more

Crystal-stacking process can produce new materials for high-tech devices

Stacking ultrathin complex oxide single-crystal layers allows researchers to create new structures with hybrid properties and multiple functions. Now, using a new platform developed by engineers at the University of Wisconsin–Madison and the Massachusetts Institute of Technology, researchers will be able to make these stacked-crystal materials in virtually unlimited combinations.

Read more

The Wild World of Microbe-Made Products – Skis Now Included

Biomanufacturing – harnessing biological processes in cells and microbes to design and manufacture products – is revolutionizing how we make everything from futuristic consumer goods to sustainable fuels to breakthrough medicines. Every biomanufactured product can be traced back to discoveries in the lab, but translating that science into a real-world product can be tricky. Berkeley Lab helps move great ideas, like outdoor gear made from algae oil, from conception to commercialization.

Read more