Stretching the capacity of flexible energy storage (video)

Researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.

LED Material Shines Under Strain

A team led by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley has demonstrated an approach for achieving LEDs with near 100% light-emission efficiency at all brightness levels.

Hydrogen Technologies Take Leading Role Toward Net Zero

Achieving Net Zero energy, where the total amount of energy used is equal to the amount of renewable energy created, is closer than ever before, and hydrogen technologies will play an important role in achieving that goal, but needs and gaps need to be addressed before a true hydrogen-powered future can take form. There are many opportunities in the global public and private sectors for research, development, and deployment collaboration.

MEDIA ADVISORY: AIP Publishing Hosts Expert Sessions on Energy Storage and Conversion at Virtual Conference

Twelve distinguished speakers will be covering critical topics impacting energy storage and conversion at the upcoming AIP Publishing Horizons Virtual Conference on Aug. 4-6. The three-day event is organized by the journal Applied Physics Reviews and brings together leaders in the field of energy science to present their latest research in six sessions

Save The Date: AIP Publishing Horizons Meeting Examines Energy Storage and Conversion

Energy conversion and storage is a critical part of modern society as applications continue to develop at a rapid pace. At the 2021 AIP Publishing Horizons Virtual Conference, researchers will unveil and discuss the latest advances in energy science and how the field will change over the next decades. In addition to speaker sessions, a poster program will provide a wide view of the exciting research going on now by scientists around the world.

Exploring the Electrochemistry of Water-Based Batteries

Researchers at Stony Brook University (SBU) and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have identified the primary reaction mechanism that occurs in a rechargeable, water-based battery made from zinc and manganese oxide. The findings, published in Energy and Environmental Science, provide new insight for developing grid-scale energy storage.

How to Make Lithium-ion Batteries Invincible

Berkeley Lab scientists have made significant progress in developing battery cathodes using a new class of materials that provide batteries with the same if not higher energy density than conventional lithium-ion batteries but can be made of inexpensive and abundant metals. Known as DRX, which stands for disordered rocksalts with excess lithium, this novel family of materials was invented less than 10 years ago and allows cathodes to be made without nickel or cobalt.

Solar energy from the deep repository

During the winter months, renewable energy is in short supply throughout Europe. An international project is now considering an unconventional solution: Renewable hydrogen and carbon dioxide are pumped into the ground together, where naturally occurring microorganisms convert the two substances into methane, the main component of natural gas.

A Cousin of Table Salt Could Make Energy Storage Faster and Safer

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Internships Put Futures in Flight

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Printing Flexible Wearable Electronics for Smart Device Applications

With the increase in demand for flexible wearable electronics, researchers have explored flexible energy storage devices, such as flexible supercapacitators, that are lightweight and safe and easily integrate with other devices. Printing electronics has proved to be an economical, simple, and scalable strategy for fabricating FSCs. In Applied Physics Reviews, researchers provide a review of printed FSCs in terms of ability to formulate functional inks, design printable electrodes, and integrate functions with other electronic devices.

Saving the climate with solar fuel

Produced in a sustainable way, synthetic fuels contribute to switching mobility to renewable energy and to achieving the climate goals in road traffic. In the mobility demonstrator “move” Empa researchers are investigating the production of synthetic methane from an energy, technical and economic perspective – a project with global potential.

Expert in Carbon Materials Kicks off 239th ECS Meeting with IMCS18 Plenary Session

The ECS Lecture at the Plenary Session of the 239th ECS Meeting with IMCS18 will be delivered by Dr. Rodney Ruoff, Distinguished Professor in the Departments of Chemistry and Materials Science, and the School of Energy Science and Chemical Engineering at the Ulsan National Institute of Science and Technology (UNIST), South Korea, and Director of the Center for Multidimensional Carbon Materials (CMCM). The Plenary Session is from 2100-2200h EST on Monday, May 31, after which the content will be available through June 26, 2021. The 239th ECS Meeting with IMCS18 takes place in a digital format. There is no cost to participate, however pre-registration is required.

Argonne leads creation of definitive valuation guide for pumped storage hydropower

Argonne scientists led four other laboratories in developing definitive guidance on how to value pumped storage hydropower projects. Their efforts resulted in DOE publication of the Pumped Storage Hydropower Valuation Guidebook: A Cost-Benefit and Decision Analysis Valuation Framework. The guide provides an objective, transparent valuation methodology and helps measure both monetary and non-monetary value streams.

Mapping Performance Variations to See How Lithium-Metal Batteries Fail

Scientists have identified the primary cause of failure in a state-of-the-art lithium-metal battery, of interest for long-range electric vehicles: electrolyte depletion.

Story tips: Urban climate impacts, materials’ dual approach and healing power

ORNL identifies a statistical relationship between the growth of cities and the spread of paved surfaces. // ORNL successfully demonstrates a technique to heal dendrites that formed in a solid electrolyte. // ORNL combines additive manufacturing with conventional compression molding.

ORNL receives three 2021 FLC Awards for technology transfer

Three technologies developed by researchers at Oak Ridge National Laboratory have won National Technology Transfer Awards from the Federal Laboratory Consortium. The annual FLC Awards recognize significant accomplishments in transferring federal laboratory technologies to the marketplace.

Chemists Settle Battery Debate, Propel Research Forward

UPTON, NY—A team of researchers led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has identified new details of the reaction mechanism that takes place in batteries with lithium metal anodes. The findings, published today in Nature Nanotechnology, are a major step towards developing smaller, lighter, and less expensive batteries for electric vehicles.

New Technique Extends Next-Generation Lithium Metal Batteries

Columbia Engineering researchers have found that alkali metal additives, such as potassium ions, can prevent lithium microstructure proliferation during battery use. They used a combination of microscopy, nuclear magnetic resonance, and computational modeling to discover that adding small amounts of potassium salt to a conventional lithium battery electrolyte produces unique chemistry at the lithium/electrolyte interface, and modulates degradation during battery operation, preventing the growth of microstructures and leading to safer, longer lasting batteries.

Toward an Ultrahigh Energy Density Capacitor

Researchers at Berkeley Lab and UC Berkeley have demonstrated that a common material can be processed into a top-performing energy storage material. Their discovery could improve the efficiency, reliability, and robustness of personal electronics, wearable technologies, and car audio systems.

Safer, longer-lasting energy storage requires focus on interface of advanced materials

More studies at the interface of battery materials, along with increased knowledge of the processes at work, are unleashing a surge of knowledge needed to more quickly address the demand for longer-lasting portable electronics, electric vehicles and stationary energy storage for the electric grid.

Finding Balance Between Green Energy Storage, Harvesting

Generating power through wind or solar energy is dependent on the abundance of the right weather conditions, making finding the optimal strategy for storage crucial to the future of sustainable energy usage. Research published in the Journal of Renewable and Sustainable Energy identifies key indicators that will help achieve balance between green energy storage capacity and harvesting capability and determine the energy potential of a region.

Peering into Functioning Batteries with Sooyeon Hwang

Using electron microscopes, Hwang—a materials scientist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN)—characterizes the structure and chemistry of operating battery electrode materials.