Chameleons inspire new multicolor 3D-printing technology

Inspired by the color-changing ability of chameleons, researchers developed a sustainable technique to 3D-print multiple, dynamic colors from a single ink. “By designing new chemistries and printing processes, we can modulate structural color on the fly to produce color gradients…

A revolution in the making

Argonne National Laboratory is shaping Industry 4.0 with groundbreaking research into advanced ways of making things more effective, efficient and economical, using the most cutting-edge materials and processes, with the lowest possible environmental impact.

Autonomous discovery defines the next era of science

Argonne National Laboratory is reimagining the lab spaces and scientific careers of the future by harnessing the power of robotics, artificial intelligence and machine learning in the quest for new knowledge.

Seven entrepreneurs join Innovation Crossroads seventh cohort

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at the Department of Energy’s Oak Ridge National Laboratory. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

Expertise in 3D printing — and a little sabotage — reveal new heights and less waste

In ideal manufacturing, 3D printing reduces waste, uses less energy and produces fewer greenhouse gas emissions. An entrepreneur and scientist at Argonne National Laboratory are working together to make this future ideal a reality.

A Recipe for 3D-Printing Food

Additive manufacturing of food involves designing, pre-processing, manufacturing, and post-processing, and each step is an opportunity to create innovative foods. In Physics of Fluids, researchers identify factors that affect the print quality and shape complexity of the food created. For example, changing the printing patterns and ingredients of the initial mix or paste can affect the food’s matrix and microstructures and therefore its texture. Accounting for these features can increase food quality, improve control, and speed up printing.

Internships help students create prototypes for career success

Argonne’s Rapid Prototyping Laboratory is a testing ground for new ideas and new careers in autonomous discovery. Undergraduate and graduate student interns are learning how to automate lab work using robotics and artificial intelligence.

Argonne seeks STEM interns to help design the future of science

The U.S. Department of Energy’s Argonne National Laboratory seeks undergraduate and graduate students for a summer 2023 internship in robotics and instrumentation. Students will explore using robotics, artificial intelligence and machine learning.

VULCAN forges new science for the future of 3D-printed metal

Oak Ridge National Laboratory researchers have developed a novel experimental platform called OpeN-AM to study additively manufactured metal in real time using beams of neutrons. The experimental system features a robotic arm that 3D-prints metal welds to create complex shapes and objects.

Army strong: Research teams join forces to invent weld wire for tank, infrastructure repair

The U.S. Departments of Energy and Defense teamed up to create a series of weld filler materials that could dramatically improve high-strength steel repair in vehicles, bridges and pipelines. This novel weld wire could help revitalize America’s aging infrastructures, which in 2021 received a C- grade from the American Society of Civil Engineers.

Entrepreneurship program at Argonne National Laboratory opens applications for startups

Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is accepting applications for its next fellowship cohort.

Closed-loop additive manufacturing fueled by upcycled plastic

Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed an upcycling approach that adds value to discarded plastics for reuse in additive manufacturing, or 3D printing. The readily adoptable, scalable method introduces a closed-loop strategy that could globally reduce plastic waste and cut carbon emissions tied to plastic production.

LLNL explores laser beam shaping to improve metal 3D printing

Researchers at Lawrence Livermore National Laboratory are addressing the issue of porosity and other phenomenon that causes defects in metal 3D printing by exploring alternative shapes to the Gaussian beams commonly employed in high-power laser printing processes such as laser powder bed fusion (LBPF).

LLNL optimizes flow-through electrodes for electrochemical reactors with 3D printing

To take advantage of the growing abundance and cheaper costs of renewable energy, Lawrence Livermore National Laboratory (LLNL) scientists and engineers are 3D printing flow-through electrodes (FTEs), core components of electrochemical reactors used for converting CO2 and other molecules to useful products.

Taking cues from nature, breakthrough ‘cellular fluidics’ technology could have sweeping impacts

Inspired by the way plants absorb and distribute water and nutrients, Lawrence Livermore National Laboratory researchers have developed a groundbreaking method for transporting liquids and gases using 3D-printed lattice design and capillary action phenomena.

Story tips: Urban climate impacts, materials’ dual approach and healing power

ORNL identifies a statistical relationship between the growth of cities and the spread of paved surfaces. // ORNL successfully demonstrates a technique to heal dendrites that formed in a solid electrolyte. // ORNL combines additive manufacturing with conventional compression molding.

ORNL receives three 2021 FLC Awards for technology transfer

Three technologies developed by researchers at Oak Ridge National Laboratory have won National Technology Transfer Awards from the Federal Laboratory Consortium. The annual FLC Awards recognize significant accomplishments in transferring federal laboratory technologies to the marketplace.

FDA Guidance Fails to Ensure Security of 3D-Printed Masks and PPE

New Brunswick, N.J. (Sept. 16, 2020) – FDA guidelines for making 3D-printed masks, face shields and other personal protective equipment (PPE) in the COVID-19 era fail to defend against cyberattacks, according to Rutgers and Georgia Tech engineers. Due to the…

AI software enables real-time 3D printing quality assessment

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

Additive Manufacturing for COVID-19

A new Prospective article—Additive Manufacturing for COVID-19: Devices, Materials, Prospects and Challenges—published in MRS Communications, looks at these critical supply issues and provides an overview of 3D printing and how coupling the tools in additive manufacturing (AM) and advanced materials has provided a viable alternative for rapid production and distribution of PPEs and medical devices.

Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

The Department of Energy’s Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

Laser Inversion enables Multi-Materials 3D Printing

Selective laser sintering is one of the most widely used processes in additive manufacturing, but it is limited to printing with a single material at a time. Columbia engineers have used their expertise in robotics to develop a new approach to overcome this limitation: By inverting the laser so that it points upwards, they’ve invented a way to enable SLS to use—at the same time—multiple materials.

As ORNL builds novel reactor, nuclear industry benefits from technology

Scientists at DOE’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory working on the Transformational Challenge Reactor, a microreactor built using 3D printing, find their work may revolutionize manufacturing in the nuclear industry — and in other industries, too.

3D-printed nuclear reactor promises faster, more economical path to nuclear energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods to confirm the consistency and reliability of its printed components.

Liquid metal research invokes ‘Terminator’ film — but much friendlier

Researchers at Binghamton University, State University of New York have developed “the first liquid metal lattice in the world.” The team has created a series of prototypes that return to their shapes when crushed.

Campus rallies to 3-D print protective medical gear

When representatives from Phelps Health, anticipating a shortage of protective masks due to the coronavirus outbreak, needed help, students, faculty and staff at Missouri S&T answered by harnessing the power of technology and ingenuity.Campus was abnormally quiet Saturday and Sunday, March 21-22, not only because it was the weekend before spring break but also because, due to the coronavirus outbreak, most students had moved out for the semester and a majority of faculty and staff prepared to work remotely.