History of insightful HIV research inspires neutron scattering approach to studying COVID-19

What began as novel investigations into HIV, abruptly pivoted to the novel coronavirus as it began to spread across the globe. Now, ORNL researchers are using neutrons to learn more about the SARS-CoV-2 protease—a protein enzyme that enables the virus to replicate within the human body. Insights on the protein structure and its behaviors will be used to create more accurate models for simulations in aims of finding drug inhibitors to block the virus’s ability to reproduce.

Read more

Oak Ridge neutron facilities ramping up research to combat COVID-19

At Oak Ridge National Laboratory, it’s all-hands-on-deck for the world-leading experts in neutron scattering as they enter the fight against COVID-19. Researchers at the lab’s Spallation Neutron Source and High Flux Isotope Reactor have a plan of attack to unleash a full barrage of neutron capabilities in an ambitious set of experiments that will provide critical pieces of information about the virus’s biological structure and how it behaves.

Read more

Scientists use neutrons to try to develop better, less costly dental restorations

Teeth damaged by trauma or disease require treatment to look and feel as good as new, but the restorative materials available to dentists don’t always last and can be costly for patients. Researchers from the University of Oklahoma Health Sciences Center’s College of Dentistry are using neutrons at ORNL’s High Flux Isotope Reactor to change that.

Read more

Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades—a feature that could possibly facilitate superconductivity at or near room temperature and pressure. The scientists conducted neutron scattering experiments at the Department of Energy’s Oak Ridge National Laboratory on samples of zirconium vanadium hydride.

Read more

New ORNL software improves neutron spectroscopy data resolution

Neutron spectroscopy is an important tool for studying magnetic and thermoelectric properties in materials. But often the resolution, or the ability of the instrument to see fine details, is too coarse to clearly observe features identifying novel phenomena in new advanced materials. To solve this problem, researchers at Oak Ridge National Laboratory, developed a new super-resolution software, called SRINS, that makes it easier for scientists to better understand materials’ dynamical properties using neutron spectroscopy.

Read more

Neutrons “break the ice” for exploring fundamental physics in frozen water

Scientists from Xavier University and Oak Ridge National Laboratory used neutrons to explore the atomic structure of ice, which sometimes features mysterious molecular anomalies in its otherwise crystalline structure. Learning more about these ionic defects could help researchers learn more about similar inconsistencies found in other materials.

Read more