Highly Sensitive Sensors Show Promise in Enhancing Human Touch

People rely on a highly tuned sense of touch to manipulate objects, but injuries to the skin and the simple act of wearing gloves can impair this ability. In this week’s Applied Physics Reviews, scientists report the development of a new tactile-enhancement system based on a highly sensitive sensor. The sensor has remarkable sensitivity, allowing the wearer to detect the light brush of a feather. This crack-based sensor was inspired by a spider’s slit organ.

Read more

Reinventing the Computer: Brain-Inspired Computing for a Post-Moore’s Law Era

Since 1947, computing development has seen a consistent doubling of the number of transistors that can fit on a chip. But that trend, Moore’s Law, may reach its limit as components of submolecular size encounter problems with thermal noise, making further scaling impossible. In this week’s Applied Physics Reviews, researchers present an examination of the computing landscape, focusing on functions needed to advance brain-inspired neuromorphic computing.

Read more

Robotic Gripping Mechanism Mimics How Sea Anemones Catch Prey

Researchers in China demonstrated a robotic gripping mechanism that mimics how a sea anemone catches its prey. The bionic torus captures and releases objects by crimping its skin. The grasper not only is relatively cheap and easy to produce but also can grab a variety of objects of different sizes, shapes, weights and materials. They discuss their work in this week’s Applied Physics Letters.

Read more

Insects’ Drag-Based Flight Mechanism Could Improve Tiny Flying Robots

Thrips don’t rely on lift in order to fly. Instead, the tiny insects rely on a drag-based flight mechanism, keeping themselves afloat in airflow velocities with a large ratio of force to wing size. In a study published in this week’s Journal of Applied Physics, researchers performed the first test of the drag force on a thrip’s wing under constant airflow in a bench-top wind tunnel. Drawing from experience in microfabrication and nanomechanics, they created an experiment in which a thrip’s wing was glued to a self-sensing microcantilever.

Read more