3D-Printed Plastics With High Performance Electrical Circuits

Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures. They used pulses of high-energy light to fuse tiny silver wires, resulting in circuits that conduct 10 times more electricity than the state of the art, according to a study in the journal Additive Manufacturing. By increasing conductivity 10-fold, the engineers can reduce energy use, extend the life of devices and increase their performance.

Read more

White Beetles Inspire Understanding to Improve Energy Conservation

Nature has inspired innovative research throughout human history, and three scientists recently studied white beetles to understand the physics of light scattering. At the AVS 66th International Symposium and Exhibition, researchers will talk about their study of these scales to better understand thin “super-white” coatings that can reject solar spectrum and radiate through transparent windows. By studying light scattering at such a small scale, they were able to calculate light scattering in the biological structures faster and more accurately.

Read more

UCI scientists reveal mechanism of electron charge exchange in molecules

Irvine, Calif., Oct. 14, 2019 – Researchers at the University of California, Irvine have developed a new scanning transmission electron microscopy method that enables visualization of the electric charge density of materials at sub-angstrom resolution. With this technique, the UCI scientists were able to observe electron distribution between atoms and molecules and uncover clues to the origins of ferroelectricity, the capacity of certain crystals to possess spontaneous electric polarization that can be switched by the application of an electric field.

Read more

Using High Energy Density Material in Electrode Design Enhances Lithium Sulfur Batteries

To develop higher capacity batteries, researchers have looked to lithium sulfur batteries because of sulfur’s high theoretical capacity and energy density. But there are still several problems to solve before they can be put into practical applications. The biggest is the shuttling effect that occurs during cycling. To solve this problem and improve lithium sulfur battery performance, the researchers created a sandwich-structured electrode using a novel material that traps polysulfides and increases the reaction kinetics.

Read more