A 10-year look at the battery supply chain in America

A new report summarizes the manufacturing and production locations of lithium-ion battery cells and packs by make and model for PEVs sold in the U.S. from 2010 to 2020. It also summarizes the annual and cumulative Li-ion battery capacity installed in hybrid electric vehicles (HEVs) sold in the U.S.

A Cousin of Table Salt Could Make Energy Storage Faster and Safer

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Perspective—Application-Driven Industrial-Scale Manufacturing of Li/Na-Ion Battery Cathodes: Current Status and Future Perspective

A comprehensive understanding of lithium-ion batteries became an essential aspect of solid-state electrochemical research due to their coalescence with routine. While it exhilarates us with increase in productivity of LIBs due to the emergence of Ni-rich cathode materials, the scope…

Editors’ Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries

All-solid-state lithium batteries have the potential to provide increased energy and power density compared to conventional lithium-ion batteries with a liquid electrolyte. The charge transport within solid electrolyte-based composite cathodes determines the C-rate capability and ultimately the overall performance of…

Reshaping the future of the electric grid through low-cost, long-duration discharge batteries

Research begun at the Department of Energy’s Joint Center for Energy Storage Research and continued at spinoff company Form Energy may launch a new era of renewable energy.

Worth their salt: New battery anodes use salt for energy, stability

Researchers at the U.S. Department of Energy’s Argonne National Laboratory and the University of California San Diego have discovered that a material that looks geometrically similar to rock salt could be an interesting candidate for lithium battery anodes that would be used in fast charging applications.

Getting the lead in

Researchers developed a low-cost, high-performance, sustainable lead-based anode for lithium-ion batteries that can power hybrid and all-electric vehicles. They also uncovered its previously unknown reaction mechanism during charge and discharge.

Inside the battery in 3D: Powerful X-rays watch solid state batteries charging and discharging

Using high-speed X-ray tomography, researchers captured images of solid-state batteries in operation and gained new insights that may improve their efficiency.

Single-Crystal Technology Holds Promise for Next-Generation Lithium-Ion Batteries

Scientists have improved a promising battery technology, creating a single-crystal, nickel-rich cathode that is hardier and more efficient than before. Increasing nickel content in the cathode of an electric vehicle’s battery is attractive because of nickel’s relatively low cost, wide availability and low toxicity compared to other materials.

Environmentally friendly method could lower costs to recycle lithium-ion batteries

A new process for restoring spent cathodes to mint condition could make it more economical to recycle lithium-ion batteries. The process, developed by nanoengineers at the University of California San Diego, is more environmentally friendly than today’s methods; it uses greener ingredients, consumes 80 to 90% less energy, and emits about 75% less greenhouse gases.

Improving High-Energy Lithium-Ion Batteries with Carbon Filler

Lithium-ion batteries are the major rechargeable power source for many portable devices as well as electric vehicles, but their use is limited, because they do not provide high power output while simultaneously allowing reversible energy storage. Research reported in Applied Physics Reviews aims to offer a solution by showing how the inclusion of conductive fillers improves battery performance.

Argonne researchers target lithium-rich materials as key to more sustainable, cost-effective, next-generation batteries

Researchers are developing new ways to advance lithium-rich batteries and using new materials for practical use, according to researchers with the U.S. Department of Energy’s Argonne National Laboratory.

The historical partnership that revolutionized battery research at Argonne

Argonne battery scientist Michael Thackeray highlights the ongoing research into manganese-based lithium-ion batteries, and how his work with Nobel Prize winner John B. Goodenough in the 80s has informed today’s studies.

Safer, longer-lasting energy storage requires focus on interface of advanced materials

More studies at the interface of battery materials, along with increased knowledge of the processes at work, are unleashing a surge of knowledge needed to more quickly address the demand for longer-lasting portable electronics, electric vehicles and stationary energy storage for the electric grid.

Redesigning lithium-ion battery anodes for better performance

In a new study, a team led by researchers at Argonne National Laboratory has made discoveries concerning a potential new, higher-capacity anode material, which would allow lithium-ion batteries to have a higher overall energy capacity.

New cathode coating extends lithium-ion battery life, boosts safety

The U.S. Department of Energy’s Argonne National Laboratory, in collaboration with Hong Kong University of Science and Technology, has developed a new particle-level cathode coating for lithium ion batteries meant to increase their life and safety.

ReCell Center could save costly nickel and cobalt, transform battery recycling worldwide

Argonne’s ReCell Center has already made pivotal discoveries as scientists create and test new recycling processes and battery designs. These discoveries will help grow a globally competitive U.S. recycling industry.

Peering into Functioning Batteries with Sooyeon Hwang

Using electron microscopes, Hwang—a materials scientist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN)—characterizes the structure and chemistry of operating battery electrode materials.

Energy storage startup SPARKZ licenses ORNL cobalt-free battery tech

Energy storage startup SPARKZ Inc. has exclusively licensed five battery technologies from the Department of Energy’s Oak Ridge National Laboratory designed to eliminate cobalt metal in lithium-ion batteries. The advancement is aimed at accelerating the production of electric vehicles and energy storage solutions for the power grid.

Scientists Learn More about the First Hours of a Lithium-ion Battery’s Life

The first hours of a lithium-ion battery’s life largely determine just how well it will perform. In those moments, a set of molecules self-assembles into a structure inside the battery that will affect the battery for years to come. Now scientists have witnessed the formation of the solid-electrolyte interphase at a molecular level.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries

At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

Building a better battery with machine learning

In two new papers, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have turned to the power of machine learning and artificial intelligence to dramatically accelerate battery discovery.

Energy storage expert up for comments on chemistry Nobel Prize, Li-ion batteries

MOSCOW (MIPT) — Following the Wednesday announcement of this year’s Nobel laureates in chemistry, we talked to Dmitry Semenenko, who heads the Energy Storage Lab at MIPT’s Institute of Arctic Technology. He is available to comment on lithium-ion batteries and…

ECS President Congratulates 2019 Nobel Prize in Chemistry Winners

Christina Bock, ECS Board president, congratulated John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino on receiving the 2019 Nobel Prize in Chemistry “for the development of lithium-ion batteries.” The long term Society members published important research papers in the ECS Journal. Goodenough and Whittingham are ECS Fellows.