Fourth cohort of 6 innovators selected for Chain Reaction Innovations program

Six new innovators will be joining Chain Reaction Innovations (CRI), the entrepreneurship program at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, as part of the elite program’s fourth cohort.

University of Toledo engineering students as future STEM leaders

On Monday, January 13, engineering students from the University of Toledo’s Roy and Marcia Armes Engineering Leaderships Institute (ELI) visited Argonne National Laboratory to prepare themselves for the leadership challenges facing engineers.

Argonne engineers streamline jet engine design

Argonne scientists are combining one-of-a-kind x-ray experiments with novel computer simulations to help engineers at aerospace and defense companies save time and money.

Rising global temperatures turn northern permafrost region into significant carbon source

A new study that incorporates datasets gathered from more than 100 sites by institutions including the U.S. Department of Energy’s (DOE) Argonne National Laboratory, suggests that decomposition of organic matter in permafrost soil is substantially larger than previously thought, demonstrating the significant impact that emissions from the permafrost soil could have on the greenhouse effect and global warming.

Building a better battery with machine learning

In two new papers, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have turned to the power of machine learning and artificial intelligence to dramatically accelerate battery discovery.

EZ Select attracts undesirables to benefit biomanufacturing

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have developed a highly selective adsorbent material called EZ Select to tackle inefficiencies in bioproduct extraction for biomanufacturing processes.

Argonne harnesses virtual power to address the most complex challenges in nuclear science

Designing a new type of nuclear reactor is a complicated endeavor requiring billions of dollars and years of development. Because of the high cost, Argonne researchers are running a broad suite of computational codes on supercomputers that offer power available at only a few sites worldwide.

Argonne harnesses virtual power to address the most complex challenges in nuclear science

Designing a new type of nuclear reactor is a complicated endeavor requiring billions of dollars and years of development. Because of the high cost, Argonne researchers are running a broad suite of computational codes on supercomputers that offer power available at only a few sites worldwide.