Cedars-Sinai Welcomes New Plastic Surgery Leader

Cedars-Sinai has selected Curtis L. Cetrulo Jr., MD, as the new vice chair of Research in the Department of Surgery, director of the Division of Plastic Surgery and director of Vascularized Composite Allotransplantation Program Development.

American Thyroid Association® Announces Award Recipients

American Thyroid Association awards honor clinicians, academicians with outstanding contributions to advancing thyroid research and care.

A foundation that fits just right gives superconducting nickelates a boost

Researchers at SLAC and Stanford found a way to make thin films of an exciting new nickel oxide superconductor that are free of extended defects. This improved the material’s ability to conduct electricity with no loss and revealed that it’s more like superconducting cuprates than previously thought.

SLAC, Stanford researchers make a new type of quantum material with a dramatic distortion pattern

The resulting distortions are ‘huge’ compared to those in other materials, and represent the first demonstration of the Jahn-Teller effect in a layered material with a flat, planar lattice, like a high-rise building with evenly spaced floors.

Weaponizing Part of the SARS-CoV-2 Spike Protein Against Itself to Prevent Infection

ROCKVILLE, MD – The virus that causes COVID-19, called SARS-CoV-2, uses its spike protein in order to stick to and infect our cells. The final step for the virus to enter our cells is for part of its spike protein to act like a twist tie, forcing the host cell’s outer membrane to fuse with the virus. Kailu Yang, in the lab of Axel Brunger, colleagues at Stanford University, and collaborators at University of California Berkely, Harvard Medical School, and University of Finland have generated a molecule based on the twisted part of the spike protein (called HR2), which sticks itself onto the virus and prevents the spike protein from twisting.

A detailed study of nickelate’s magnetism finds a strong kinship with cuprate superconductors

Are new nickelate superconductors close kin to the original high-temperature superconductors, the cuprates? The first study of their magnetic properties says the answer is yes. Scientists from SLAC, Stanford and Diamond Light Source found important similarities but also subtle differences between the two.

First nanoscale look at a reaction that limits the efficiency of generating clean hydrogen fuel

Transitioning to a hydrogen economy will require massive production of cheap, clean hydrogen gas for fuel and chemical feedstocks. New tools allow scientists to zoom in on a catalytic reaction that’s been a bottleneck in efforts to generate hydrogen from water more efficiently.

Supercomputers Illustrate the Mechanical Process of Cancer Growth

According to the World Health Organization, one in six worldwide deaths are attributed to cancer, but not due to initial malignant tumors. They were caused by the spread of cancer cells to surrounding tissues, which consist largely of collagen. That was the focus of a recent study by Stanford University and Purdue University researchers.

Cancer Research Expands Body’s Own Immune System to Kill Tumors

Scientists are hoping advances in cancer research could lead to a day when a patient’s own immune system could be used to fight and destroy a wide range of tumors. Cancer immunotherapy has some remarkable successes, but its effectiveness has been limited to a relatively small handful of cancers. In APL Bioengineering, researchers describe how advances in engineering models of tumors can greatly expand cancer immunotherapy’s effectiveness to a wider range of cancers.

Squeezing a rock-star material could make it stable enough for solar cells

A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of today’s manufacturing processes.

First glimpse of polarons forming in a promising next-gen energy material

Polarons affect a material’s behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab. Now scientists have directly seen and measured their formation for the first time.

Planning Ahead Protects Fish and Fisheries

Conservation of fish and other marine life migrating from warming ocean waters will be more effective and also protect commercial fisheries if plans are made now to cope with climate change, according to a Rutgers-led study in the journal Science Advances.

SLAC, Stanford to host national service center for cryo-ET sample preparation

The NIH is establishing a national service center at the SLAC and Stanford where biomedical researchers can learn how to prepare extremely thin specimens that are frozen into a glassy state for cryogenic electron tomography (cryo-ET), a powerful tool for directly visualizing cellular components in 3D.

Researchers tracking COVID-19 in wastewater to join forces on framework for translating data into a public health response

Researchers from four institutions will create a “startup blueprint” that cities can use to implement SARS-CoV-2 surveillance at their area’s wastewater treatment plants. Funded by the Sloan Foundation, the action plan they develop could be used to monitor COVID-19 and other pathogens.

Scientists marry two powerful techniques to pinpoint locations of individual molecules in their cellular neighborhoods

Developed in the lab of Stanford University Nobelist W.E. Moerner, the technique combines cryoelectron tomography and low temperature single-molecule microscopy. It has potential to answer fundamental questions about the molecular machinery of viruses, parasites, and processes like photosynthesis.

Scientists Aim Gene-Targeting Breakthrough Against COVID-19

Scientists at Berkeley Lab and Stanford have joined forces to aim a gene-targeting, antiviral agent called PAC-MAN against COVID-19.

A sound treatment

University of Utah biomedical engineering assistant professor Jan Kubanek has discovered that sound waves of high frequency (ultrasound) can be emitted into a patient’s brain to alter his or her state. It’s a non-invasive treatment that doesn’t involve medications or surgery and has a unique potential to treat mental disorders including depression and anxiety and neurological disorders such as chronic pain and epilepsy.

Upcoming Trimble Lecture with Elizabeth Kessler Highlights the Impacts of Hubble Imagery on May 7

The American Institute of Physics, celebrating the 30th anniversary of the launch of the NASA/ESA Hubble Space Telescope, is delighted to host a virtual presentation by Stanford University’s Elizabeth Kessler in an upcoming Lyne Starling Trimble Science Heritage Public Lecture. The lecture series is presented by AIP and features science historians and writers who study the role of science and technology in modern society and culture. “Hubble Space Telescope Images and the Astronomical Sublime” will be hosted virtually, Thursday, May 7 at 3:30 p.m. Eastern (U.S.).

Inverse Design Software Automates Design Process for Optical, Nanophotonic Structures

Stanford University researchers created an inverse design codebase called SPINS that can help researchers explore different design methodologies to find fabricable optical and nanophotonic structures. In the journal Applied Physics Reviews, Logan Su and colleagues review inverse design’s potential for optical and nanophotonic structures, as well as present and explain how to use their own inverse design codebase.

Advances in Computer Modeling, Protein Development Propel Cellular Engineering

A review of recent work in biophysics highlights efforts in cellular engineering, ranging from proteins to cellular components to tissues grown on next-generation chips. Author Ngan Huang said the fast pace of development prompted her and her colleagues to take stock of promising areas in the field as well as hurdles researchers can expect in coming years. They discuss their work in this week’s APL Bioengineering.

Scientists discover how proteins form crystals that tile a microbe’s shell

Many microbes wear beautifully patterned crystalline shells. Now scientists have zoomed in on the very first step in microbial shell-building: nucleation, where squiggly proteins crystallize into sturdy building blocks. The results help explain how the shells assemble themselves so quickly.