XL-Calibur telescope launched to study black holes

Scientists from Washington University in St. Louis have launched a balloon-borne telescope to unlock the secrets of astrophysical black holes and neutron stars, some of the most extreme objects in the universe. The device known as XL-Calibur was launched from the Swedish Space Corporation’s Esrange Space Center, situated north of the Arctic Circle near Kiruna, Sweden, July 9.

Three Argonne postdocs invited to prestigious meeting of Nobel laureates

Three Argonne postdoc scientists have been invited to the prestigious Nobel Laureate Meetings in Lindau, Germany, where they will meet with past Nobel Prize winners in their fields.

Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures

Abstract Due to the increasing volume of electric vehicles in automotive markets and the limited lifetime of onboard lithium-ion batteries, the large-scale retirement of batteries is imminent. The battery packs retired from electric vehicles still own 70%–80% of the initial capacity, thus having…

Comprehensive Detection of Light: Dispersion-assisted Photodetector Deciphering High-dimensional Light

The intricate nature of light, characterized by its intensity, polarization, and spectrum composition, holds profound importance across a range of scientific and technological disciplines. From enhancing optical communications to enabling precise chemical and biological characterization, a comprehensive understanding of light’s properties is indispensable.

Innovative Material for Sustainable Building

Researchers at the Karlsruhe Institute of Technology (KIT) introduce a polymer-based material with unique properties in the latest issue of the journal Nature Communications. This material allows sunlight to enter, maintains a more comfortable indoor climate without additional energy, and cleans itself like a lotus leaf. The new development could replace glass components in walls and roofs in the future

Promethium bound: Rare earth element’s secrets exposed

Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.

Comparison of four methods on drying efficiency and physicochemical properties of chicken meat

In this study, four drying methods including hot air drying (HAD), catalytic infrared drying (CIRD), electric infrared drying (EIRD) and electric oven drying (EOD) were used to prepare dried chicken breast. The study systematically compared the drying efficiencies of different methods and their effects on physico-chemical properties, pet food applications, energy consumption, and cost.

DOE’s Office of Science Graduate Student Research Program Selects 86 Outstanding U.S. Graduate Students

The Department of Energy’s (DOE’s) Office of Science has selected 86 graduate students representing 31 states and Puerto Rico for the Office of Science Graduate Student Research (SCGSR) program’s 2023 Solicitation 2 cycle.

João Barata Awarded CERN Fellowship

João Barata, a physicist in the Nuclear Theory Group at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has received a fellowship at CERN, the European Organization for Nuclear Research. In October 2024, Barata will begin the three-year-long appointment in CERN’s Department of Theoretical Physics.

New Technique Lets Scientists Create Resistance-Free Electron Channels

Researchers have taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state – an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

Shaping the Future: A New Technique for Sorting Micro-Particles Unveiled

Thanks to the rapid progress in tiny tech, we’ve been mainly using microfluidics to sort tiny particles by size. But now, there’s a new way to sort them by shape, which could be a big deal for medical tests and chemistry. This study shows off a new method using sound waves to separate oddly shaped particles from round ones, without needing any labels.

Argonne National Laboratory set to play pivotal role in realizing U.S. goals for nuclear science research

The Nuclear Science Advisory Committee recently unveiled its 2023 Long Range Plan for nuclear science. Argonne National Laboratory, with its world-class nuclear physics facilities and expertise, is poised to play a pivotal role in realizing the plan.

Argonne event helps Hispanic students explore their dreams of STEM careers

Forty eighth grade students — many originally from Mexico, Colombia, Venezuela and elsewhere — learned firsthand how scientists of Hispanic/Latino heritage contribute to science during the 18th annual Hispanic/Latino Education Outreach Day at Argonne.

Manipulating nonlinear exciton polaritons in an atomically-thin semiconductor with artificial potential landscapes

Nonlinear exciton polaritons in TMDs microcavities provide a versatile platform for exploring interacting many-body phenomena. To achieve an appropriate combination of strong nonlinearity with the thermal stability of the polaritons, scientists from Tsinghua University, Wuhan University and Beijing Academy of Quantum Information Sciences jointly developed the artificial mesa cavities to manipulate the nonlinear interaction and the macroscopic coherence of polaritons at ambient conditions. This work will stimulate more developments in realistic polaritonic applications based on the TMDs microcavities.

New ‘Long Range Plan for Nuclear Science’ recommends FRIB enhancements to forward the field

The Facility for Rare Isotope Beams, or FRIB, figures largely in the Nuclear Science Advisory Committee’s, or NSAC’s, newly released “A New Era of Discovery: The 2023 Long Range Plan for Nuclear Science.” The new plan, released on Oct. 4, provides a roadmap for advancing the nation’s nuclear science research programs over the next decade. It is the eighth long range plan published by NSAC since 1979.

Argonne to recycle magnets from Advanced Photon Source in new physics experiment at Brookhaven

Argonne is recycling 700 magnets as its Advanced Photon Source undergoes an upgrade, and the old magnets will be used for the Electron-Ion Collider.