Not Just Disturbance: Turbulence Protects Fusion Reactor Walls

To operate successfully, ITER and future fusion energy reactors cannot allow melting of the walls of the divertor plates that remove excess heat from the plasma in a reactor. These walls are especially at risk of melting when heat is applied to narrow areas. Now, however, an extreme-scale computing analysis indicates that turbulence will reduce that risk.

New Study Shows How Mutations in SARS-CoV-2 Allow the Virus to Evade Immune System Defenses

Research reveals how mutated SARS-CoV-2 evades immune system defenses

In lab-dish experiments, the mutant virus escaped antibodies from the plasma of

COVID-19 survivors as well as pharmaceutical-grade antibodies

Mutations arose in an immunocompromised patient with chronic SARS-CoV-2 infection

Patient-derived virus harbored structural changes now seen cropping up independently in samples across the globe

Findings underscore the need for better genomic surveillance to keep track of emerging variants

Results highlight importance of therapies aimed at multiple targets on SARS-CoV-2 to minimize risk of resistance

Advisory Committee Releases Strategic Plan for U.S. Fusion, Plasma Program

The U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee (FESAC) has adopted and endorsed a new report that lays out a strategic plan for fusion energy and plasma science research over the next decade. The report has been…

Hackensack Meridian Health Convalescent Plasma Work for COVID-19 Treatments Enters Next Phase of Study

The new Phase 2 study is for infusing this potentially valuable serum into patients with early-stage COVID-19 infection who have at least one major risk factor for serious disease, in an outpatient setting. The goal is to treat the patients in the first 96 hours – with the aim to prevent hospitalization entirely.

Understanding the Utility of Plasmas for Medical Applications

Plasma medicine is an emerging field, as plasmas show promise for use in a wide range of therapies from wound healing to cancer treatment, and plasma jets are the main plasma sources typically used in plasma-surface applications. To better understand how plasma jets modify the surfaces of biological tissue, researchers conducted computer simulations of the interaction between an atmospheric pressure plasma jet with a surface that has properties similar to blood serum. They present their analysis in the Journal of Applied Physics.

Inducing Plasma in Biomass Could Make Biogas Easier to Produce

Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges. Cellulose and woody lignocellulose are especially hard for bacteria to digest but pretreatment can make it easier. Researchers are testing plasma formation in biomass and finding a promising method: A plasma-liquid interaction forms reactive species that help break down the biomass and decrease the viscosity of the biomass material.

Study takes us a step closer to a universal antibody test for COVID-19

A study released by Houston Methodist Sept. 10 in the Journal of Clinical Investigation takes researchers closer to developing a uniform, universal COVID-19 antibody test. The multicenter collaboration tested alternative ways to measure COVID-19 antibody levels that’s faster, easier and can inexpensively be used on a larger scale to accurately identify potential donors for plasma therapy with the best chance of helping patients infected with SARS-CoV-2.

DOE-funded UAH directed plasma research may advance pulsed fusion propulsion systems

A professor at The University of Alabama in Huntsville (UAH) has been awarded a one-year, $98,930 grant by the U.S. Department of Energy (DOE) for plasma research that could advance pulsed fusion propulsion for spacecraft.

Laser, Biosciences Researchers Combine Efforts to Study Viruses in Droplets

Laser and biology experts at Berkeley Lab are working together to develop a platform and experiments to study the structure and components of viruses like the one causing COVID-19, and to learn how viruses interact with their surrounding environment. The experiments could provide new insight on how to reduce the infectiousness of viruses.

Next-Gen Laser Facilities Look to Usher in New Era of Relativistic Plasmas Research

Chirped pulse amplification increases the strength of laser pulses in many of today’s highest-powered research lasers, and as next-generation laser facilities look to push beam power, physicists expect a new era for studying plasmas. Researchers have released a study in Physics of Plasmas taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics processes and introducing the physics of relativistic plasma in supercritical fields.

Fossil Fuel-Free Jet Propulsion with Air Plasmas

Humans depend on fossil fuels as their primary energy source, especially in transportation. However, fossil fuels are both unsustainable and unsafe, serving as the largest source of greenhouse gas emissions. Researchers in China have demonstrated a prototype device that uses microwave air plasmas for jet propulsion, generating the high-temperature, high-pressure plasma in situ using only injected air and electricity. They describe the engine in AIP Advances.

UAH’s Center for Space Plasma and Aeronomic Research has central role in 2024 IMAP mission

The Center for Space Plasma and Aeronomic Research (CSPAR) at The University of Alabama in Huntsville (UAH) will be central to the modeling and data crunching that follow the scheduled launch of NASA’s Interstellar Mapping and Acceleration Probe (IMAP) mission in 2024.

Blowing bubbles: PPPL scientist confirms novel way to launch and drive current in fusion plasmas

PPPL physicist Fatima Ebrahimi has used high-resolution computer simulations to confirm the practicality of the CHI start-up technique. The simulations show that CHI could produce electric current continuously in larger, more powerful tokamaks than exist today to produce stable fusion plasmas.

Vlad Soukhanovskii

Vsevolod A. Soukhanovskii is a group leader at the Fusion Energy Sciences Program at the Department of Energy’s Lawrence Livermore National Laboratory. He and his research group are stationed on a long-term assignment focusing on edge plasma transport and plasma-surface interactions in spherical tokamaks at the Department of Energy’s Princeton Plasma Physics Laboratory.