Spider Silk Can Create Lenses Useful for Biological Imaging

Spider silk is useful for a variety of biomedical applications: It exhibits mechanical properties superior to synthetic fibers for tissue engineering, and it is not toxic or harmful to living cells. One unexpected application for spider silk is its use in the creation of biocompatible lenses for biological imaging applications. Researchers describe the feasibility of creating lenses capitalizing on the properties of natural spider silk material in the Journal of Applied Physics.

Read more

Lack of Damage After Secondary Impacts Surprises Researchers

When a material is subjected to a shock or blast wave, damage often forms internally through spall fracture, and research is needed to know how these damaged materials respond to subsequent shock waves. Recent experimentation on spall fracture in metals found that, in certain cases, there was an almost complete lack of damage with only a thin band of altered microstructure observed. In the Journal of Applied Physics, researchers narrowed down exactly why the expected damage was missing.

Read more

Determining Effective Magnetic Moment of Multicore Nanoparticles

Most commercial nanoparticles do not possess a single magnetic core but have small magnetic crystals called crystallites. The important question is how these crystallites behave inside a multicore nanoparticle and how they respond to an applied magnetic field. In the Journal of Applied Physics, researchers compare the effective magnetic moments of different multicore nanoparticle systems and shows that they are magnetic-field dependent. The paper’s findings are important for researchers optimizing magnetic nanoparticles for various applications.

Read more

Image Analysis Technique Provides Better Understanding of Heart Cell Defects

Many patients with heart disease face limited treatment options. Fortunately, stem cell biology has enabled researchers to produce large numbers of cardiomyocytes, which may be used in advanced drug screens and cell-based therapies. However, current image analysis techniques don’t allow researchers to analyze heterogeneous, multidirectional, striated myofibrils typical of immature cells. In the Journal of Applied Physics, researchers showcase an algorithm that combines gradient methods with fast Fourier transforms to quantify myofibril structures in heart cells with considerable accuracy.

Read more

SDSC Supercomputer Simulations Aid in Solving Boron Carbide Mystery

Building upon decades of research on how to make boron carbide even more efficient, an engineering team at the University of Florida (UF) has been conducting simulations using SDSC’s Comet supercomputer to better understand the nanoscale level deformation mechanisms of this important material.

Read more

Insects’ Drag-Based Flight Mechanism Could Improve Tiny Flying Robots

Thrips don’t rely on lift in order to fly. Instead, the tiny insects rely on a drag-based flight mechanism, keeping themselves afloat in airflow velocities with a large ratio of force to wing size. In a study published in this week’s Journal of Applied Physics, researchers performed the first test of the drag force on a thrip’s wing under constant airflow in a bench-top wind tunnel. Drawing from experience in microfabrication and nanomechanics, they created an experiment in which a thrip’s wing was glued to a self-sensing microcantilever.

Read more

Future of LEDs Gets Boost from Verification of Localization States Within Indium Gallium Nitride Quantum Wells

LEDs made of indium gallium nitride provide better luminescence efficiency than many of the other materials used to create blue and green LEDs, but a big challenge of working with InGaN is its known dislocation density defects that make it difficult to understand its emission properties.

Read more