Small Fusion Experiment Hits Temperatures Hotter than the Sun’s Core

Future commercial fusion power plants will need to achieve temperatures of 100 million degrees C, which requires careful control of the plasma. Researchers have now achieved these temperatures on a compact spherical tokamak called ST40. The results are a step toward fusion pilot plants and the development of more compact, and potentially more economical, fusion power sources.

LLNL’s Annie Kritcher named to TIME100 list of the 100 most influential people in the world

Time Magazine has named Lawrence Livermore National Laboratory design physicist Andrea “Annie” Kritcher to its annual list of the 100 most influential people in the world. Kritcher is recognized for her role as principal designer for the December 2022 fusion ignition experiment at NIF.

How Do Neutrons Interact with Reactor Materials?

Nuclear fission and fusion reactors use carbon and silicon in shielding, structural materials, fuel, and neutron moderators. Neutrons are the drivers of the nuclear energy production processes. This makes understanding how neutrons scatter from all reactor materials critical for nuclear plant design and other applications. In this research, scientists investigated the interaction of neutrons with silicon and carbon.

Oxygen Formation in the Light of Gamma Beams

Nuclear fusion reactions in stars consume carbon-12 to produce oxygen-16, and the resulting ratio of carbon to oxygen shapes a star’s evolution. Physicists have not been able to measure this ratio with precision using existing experimental methods. A new method shines gamma beams on an oxygen-16 target and captures images of the outgoing reaction products to obtain higher-quality data on this reaction.

Scientists Use Supercomputers to Study Reliable Fusion Reactor Design, Operation

A team used two DOE supercomputers to complete simulations of the full-power ITER fusion device and found that the component that removes exhaust heat from ITER may be more likely to maintain its integrity than was predicted by the current trend of fusion devices.

Best Region For Life on Mars Was Far Below Surface

The most habitable region for life on Mars would have been up to several miles below its surface, likely due to subsurface melting of thick ice sheets fueled by geothermal heat, a Rutgers-led study concludes. The study, published in the journal Science Advances, may help resolve what’s known as the faint young sun paradox – a lingering key question in Mars science.