Fusion Energy Sciences

Magnetic Ripples Calm the Surface of Fusion Plasmas

The ITER fusion reactor being built in the south of France will use rippled magnetic fields to prevent bursts of heat and particles that can damage the walls of the reactor. Now, physicists at the Princeton Plasma Physics Laboratory and the DIII-D national fusion facility have compared computer simulations of the DIII-D plasma with experimental measurements to better understand how controlled magnetic ripples outside the plasma can suppress these bursts.

DIII-D Researchers Use Machine Learning to Steer Fusion Plasmas Near Operational Limits

Researchers at the DIII-D National Fusion Facility recently achieved a scientific first when they used machine learning calculations to automatically prevent fusion plasma disruptions in real time, while simultaneously optimizing the plasma for peak performance. The new experiments are the first of what they expect to be a wave of research in which machine learning–augmented controls could broaden the understanding of fusion plasmas. The work may help deliver reliable, peak-performance operation of future fusion reactors.

Vlad Soukhanovskii

Vsevolod A. Soukhanovskii is a group leader at the Fusion Energy Sciences Program at the Department of Energy’s Lawrence Livermore National Laboratory. He and his research group are stationed on a long-term assignment focusing on edge plasma transport and plasma-surface interactions in spherical tokamaks at the Department of Energy’s Princeton Plasma Physics Laboratory.