Accelerator Makes Cross-Country Trek to Enable Laser Upgrade

Today, the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has shipped the final new section of accelerator that it has built for an upgrade of the Linac Coherent Light Source (LCLS). The section of accelerator, called a cryomodule, has begun a cross-country road trip to DOE’s SLAC National Accelerator Laboratory, where it will be installed in LCLS-II, the world’s brightest X-ray laser.

Read more

Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

Real-time measurements captured by researchers at the Department of Energy’s Oak Ridge National Laboratory provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

Read more

Next-Gen Laser Facilities Look to Usher in New Era of Relativistic Plasmas Research

Chirped pulse amplification increases the strength of laser pulses in many of today’s highest-powered research lasers, and as next-generation laser facilities look to push beam power, physicists expect a new era for studying plasmas. Researchers have released a study in Physics of Plasmas taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics processes and introducing the physics of relativistic plasma in supercritical fields.

Read more

Laser Pulse Creates Frequency Doubling in Amorphous Dielectric Material

Researchers have demonstrated a new all-optical technique for creating robust second-order nonlinear effects in materials that don’t normally support them. Using a laser pulse fired at an array of gold triangles on a titanium dioxide (TiO2) slab, the researchers created excited electrons that briefly doubled the frequency of a beam from a second laser as it bounced off the amorphous TiO2 slab.

Read more