More than 1,000 SARS-CoV-2 Coronavirus Protein 3D Structures Available

New Brunswick, N.J. (March 3, 2021) – The 3D structures of more than 1,000 SARS-CoV-2 coronavirus proteins are freely available from the RCSB Protein Data Bank headquartered at Rutgers University–New Brunswick. The data bank reached the milestone this week, with 1,018 proteins as…

Rutgers Expert Can Discuss AI Advances Linked to RCSB Protein Data Bank

New Brunswick, N.J. (Dec. 3, 2020) – Stephen K. Burley, director of the RCSB Protein Data Bank headquartered at Rutgers University–New Brunswick, is available for interviews on how the bank’s 50 years of data on the 3D biomolecular structures of life and artificial intelligence can lead…

Squid Jet Propulsion Can Enhance Design of Underwater Robots, Vehicles

Squids use a form of jet propulsion that is not well understood, especially when it comes to their hydrodynamics under turbulent flow conditions. Discovering their secrets can help create new designs for bioinspired underwater robots, so researchers are exploring the fundamental mechanism. They describe their numerical study in Physics of Fluids; among their discoveries, they found that thrust production and efficiency are underestimated within laminar, or nonturbulent, flows.

Respiratory Droplet Motion, Evaporation and Spread of COVID-19-Type Pandemics

It is well established the COVID-19 virus is transmitted via respiratory droplets. Consequently, much research targets better understanding droplet motion and evaporation. In Physics of Fluids, researchers developed a mathematical model for the early phases of a COVID-19-like pandemic using the aerodynamics and evaporation characteristics of respiratory droplets. The researchers modeled the pandemic dynamics with a reaction mechanism and then compared the droplet cloud ejected by an infected person versus one by a healthy person.

Next-Gen Laser Facilities Look to Usher in New Era of Relativistic Plasmas Research

Chirped pulse amplification increases the strength of laser pulses in many of today’s highest-powered research lasers, and as next-generation laser facilities look to push beam power, physicists expect a new era for studying plasmas. Researchers have released a study in Physics of Plasmas taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics processes and introducing the physics of relativistic plasma in supercritical fields.

Rutgers Expert Available to Discuss How to Help Free Market Fight Coronavirus

New Brunswick, N.J. (March 25, 2020) – Stephen K. Burley, director of the RCSB Protein Data Bank headquartered at Rutgers University–New Brunswick, is available for interviews on how to help the free market fight the coronavirus. His viewpoint is published in the journal Nature. “Had drug…