DNA Origami Enables Fabricating Superconducting Nanowires

In AIP Advances, researchers describe how to exploit DNA origami as a platform to build superconducting nanoarchitectures. The structures they built are addressable with nanometric precision that can be used as a template for 3D architectures that are not possible today via conventional fabrication techniques. Inspired by previous works using the DNA molecule as a template for superconducting nanowires, the group took advantage of a recent bioengineering advance known as DNA origami to fold DNA into arbitrary shapes.

Read more

UCI researchers use deep learning to identify gene regulation at single-cell level

Irvine, Calif., Jan. 5, 2021 — Scientists at the University of California, Irvine have developed a new deep-learning framework that predicts gene regulation at the single-cell level. Deep learning, a family of machine-learning methods based on artificial neural networks, has revolutionized applications such as image interpretation, natural language processing and autonomous driving.

Read more

Discovery: How Colorado Potato Beetles Beat Pesticides

New research shows that pesticide alter how Colorado potato beetles manage their DNA. These changes were passed down two generations suggesting that rapid resistance to pesticides may not require beetles to evolve their genetic code. Instead they may simply use existing genes to tolerate toxins already found in potatoes. The scientists were surprised that these epigenetic changes, triggered by a single tiny dose of pesticide, were maintained through multiple rounds of sexual reproduction.

Read more

Simulations Reveal Nature’s Design for Error Correction During DNA Replication

A Georgia State University team has used the nation’s fastest supercomputer, Summit at the US Department of Energy’s Oak Ridge National Laboratory, to find the optimal transition path that one E. coli enzyme uses to switch between building and editing DNA to rapidly remove misincorporated pieces of DNA.

Read more

Errant DNA Boosts Immunotherapy Effectiveness

DALLAS – Dec. 17, 2020 – DNA that ends up where it doesn’t belong in cancer cells can unleash an immune response that makes tumors more susceptible to immunotherapy, the results of two UT Southwestern studies indicate. The findings, published online today in Cancer Cell, suggest that delivering radiation – which triggers DNA release from cells – before immunotherapy could be an effective way to fight cancers that are challenging to treat.

Read more

Rutgers Expert Can Discuss AI Advances Linked to RCSB Protein Data Bank

New Brunswick, N.J. (Dec. 3, 2020) – Stephen K. Burley, director of the RCSB Protein Data Bank headquartered at Rutgers University–New Brunswick, is available for

Read more

UNLV Immunologist on the Differences Between Two Leading COVID-19 Vaccine Candidates

Millions around the world have waited for news about a COVID-19 vaccine, regarding it as the beginning of the end for the global pandemic and a herald for the eventual return to “normal life.” Recent announcements from pharmaceutical companies Pfizer and Moderna that their respective late-stage vaccine trials have shown a 90% or better effectiveness rate have received international applause, excitement furthered with estimates that doses could be ready as early as December.

Read more

Genetic Code Evolution and Darwin’s Evolution Theory Should Consider DNA an ‘Energy Code’

Darwin’s theory of evolution should be expanded to include consideration of a DNA stability “energy code” – so-called “molecular Darwinism” – to further account for the long-term survival of species’ characteristics on Earth, according to Rutgers scientists. The iconic genetic code can be viewed as an “energy code” that evolved by following the laws of thermodynamics (flow of energy), causing its evolution to culminate in a nearly singular code for all living species, according to the Rutgers co-authored study in the journal Quarterly Review of Biophysics.

Read more

ORNL researcher studies individualized isotopes’ impact by targeting cancer

A radioisotope researcher in the Radioisotope Science and Technology Division at the Department of Energy’s Oak Ridge National Laboratory, Davern is focusing on ways to use nanoparticles — particles 100 nanometers or smaller that can have special properties — to contain those radioisotopes and deliver them directly to cancer cells, where they can decay into different isotopes that irradiate those cells.

Read more

Ingo Mellinghoff Named Chair of MSK’s Department of Neurology

Neuro-oncologist and renowned physician-scientist Ingo Mellinghoff will lead MSK’s distinguished Department of Neurology after previously serving as Acting Co-Chair.

Read more