Researchers use Argonne X-rays to find the best antibodies

Antibody therapies are only effective if the antibodies do what we want them to do. This research can help scientists determine if an antibody is likely to stick to something other than the intended target, which should lessen the amount of time wasted with overly sticky antibodies.

Projects to fight biological threats receive $5 million in federal funding

To help computer models better mimic reality, Argonne National Laboratory and Sandia National Laboratories will collaborate on agent-based modeling projects.

Powered by artificial intelligence, Argonne technology eyes bird activity at solar facilities

The World Health Organization says monkeypox is a global health emergency. Scientists use ultrabright X-ray beams and diffraction imagery to understand how poxviruses behave. This can accelerate development of critical vaccines and treatments for monkeypox and other poxviruses.

Scientists repurpose cancer and seizure medications to aid in the fight against COVID-19

Two teams of researchers using the Advanced Photon Source identified existing drugs — one used to treat cancer, the other an anti-seizure medication — that may work as treatments for COVID-19.

Preparing for exascale: Aurora supercomputer to help scientists visualize the spread of cancer

In advance of Argonne’s Aurora exascale supercomputer, Duke University assistant professor Amanda Randles is leading a new study to analyze cancer metastasis using HARVEY, a code that simulates blood vessels within the human body.

10 ways Argonne science is combatting COVID-19

Argonne scientists and research facilities have made a difference in the fight against COVID-19 in the year since the first gene sequence for the virus was published.

Argonne AI methods unravel mysteries of SARS-CoV-2 viral-human cell interaction

Using a combination of AI and supercomputing resources, Argonne researchers are examining the dynamics of the SARS-CoV-2 spike protein to determine how it fuses with the human host cell, advancing the search for drug treatments.

UCI mathematicians use machine intelligence to map gene interactions

Irvine, Calif., April 29, 2020 — Researchers at the University of California, Irvine have developed a new mathematical machine-intelligence-based technique that spatially delineates highly complicated cell-to-cell and gene-gene interactions. The powerful method could help with the diagnosis and treatment of diseases ranging from cancer to COVID-19 through quantifing crosstalks between “good” cells and “bad” cells.

Argonne’s researchers and facilities playing a key role in the fight against COVID-19

Argonne scientists are working around the clock to analyze the virus to find new treatments and cures, predict how it will propagate through the population, and make sure that our supply chains remain intact.

UCI team demonstrates ability to supercharge cells with mitochondrial transplantation

Irvine, Calif., March 23, 2020 – Researchers at the University of California, Irvine have shown that they can give cells a short-term boost of energy through mitochondrial transplantation. The team’s study, published today in the Journal of the American Heart Association, suggests that mitochondrial transplantation could one day be employed to cure various cardiovascular, metabolic and neurodegenerative disorders – and even offer a new approach to the treatment of cancer.

New coronavirus protein reveals drug target

A potential drug target has been identified in a newly mapped protein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). The structure was solved by a team including the University of Chicago (U of C), the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University Feinberg School of Medicine and the University of California, Riverside School of Medicine (UCR).

Major Asian Gene Study to Help Doctors Battle Disease

“Under-representation of Asian populations in genetic studies has meant that medical relevance for more than half of the human population is reduced,” one researcher said.