Advanced Light Source Upgrade Approved to Start Construction

Berkeley Lab’s ALS has received federal approval to begin construction on an upgrade that will boost the brightness of its X-ray beams at least a hundredfold. Scientists will use the improved beams for research into new materials, chemical reactions, and biological processes. This construction milestone enables the lab’s biggest project in three decades to move from planning to execution.

Jenny Nelson named Fred Kavli Distinguished Lecturer in Materials Science at 2022 MRS Fall Meeting & Exhibit

WARRENDALE, PA—The Materials Research Society (MRS) announced that Jenny Nelson, Imperial College London, has been selected for the Fred Kavli Distinguished Lectureship in Materials Science for the 2022 MRS Fall Meeting & Exhibit in Boston, Massachusetts. Nelson was selected by the 2022 MRS Fall Meeting Chairs.

Joining Forces: Fast-as-lightning 3D Microprinting with Two Lasers

Printing objects from plastic precisely, quickly, and inexpensively is the goal of many 3D printing processes. However, speed and high resolution remain a technological challenge. A research team from the Karlsruhe Institute of Technology (KIT), Heidelberg University, and the Queensland University of Technology (QUT) has come a long way toward achieving this goal. It developed a laser printing process that can print micrometer-sized parts in the blink of an eye. The international team published the work in Nature Photonics. (DOI: 10.1038/s41566-022-01081-0)

Boron Nitride with a Twist Could Lead to New Way to Make Qubits

Achieving scalability in quantum processors, sensors, and networks requires novel devices that are easily manipulated between two quantum states. A team led by Berkeley Lab researchers has developed a method, using a solid-state “twisted” crystalline layered material, which gives rise to tiny light-emitting points that can be switched on and off with the simple application of an external voltage. The research could lead to a new way to make quantum bits, or qubits, which encode information in quantum computers.

Engineers discover new process for synthetic material growth, enabling soft robots that grow like plants

An interdisciplinary team of University of Minnesota Twin Cities researchers has developed a new, plant-inspired extrusion process that enables synthetic material growth, and the creation of a soft robot that builds its own solid body from liquid to navigate hard-to-reach places and complicated terrain.

NSLS-II Researchers Win 2022 Microscopy Today Innovation Award

UPTON, NY On Aug. 3, 2022, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory received the 2022 Microscopy Today Innovation Award for their development of a system with bonded x-ray lenses that make nanoscale resolution more accessible than ever before. When the team at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility, tested the new lens system, they achieved a resolution down to approx.

Underwater glove puts octopus’ abilities on the hand of humans

Humans aren’t naturally equipped to thrive underwater. There are critical times when this becomes a liability. Rescue divers, underwater archeologists, bridge engineers, and salvage crews all use their hands to extract people and objects from water, and some of those removals suffer damage if subjected to an iron grip. Researchers at Virginia Tech working to solve this problem have developed an octopus-inspired glove capable of securely gripping objects underwater. They call it: Octa-glove.

These energy-packed batteries work well in extreme cold and heat

Researchers developed lithium-ion batteries that perform well at freezing cold and scorching hot temperatures, while packing a lot of energy. This could help electric cars travel farther on a single charge in the cold and reduce the need for cooling systems for the cars’ batteries in hot climates.

Press registration opens for the hybrid ACS Fall 2022 meeting

The American Chemical Society’s ACS Fall 2022 will be held virtually and in Chicago Aug. 21–25 with the theme “Sustainability in a Changing World.” ACS considers requests for press credentials and complimentary meeting registration from reporters and public information officers at selected institutions.

New Ultrathin Capacitor Could Enable Energy-Efficient Microchips

Scientists at Berkeley Lab and UC Berkeley have developed a thin film from a century-old material for next-gen memory and logic devices. The breakthrough advances the pursuit of low-voltage electronics that require less energy to operate than today’s silicon-based electronics.

Department of Energy names Argonne researchers to receive Early Career Research Program Awards

The Early Career Research Program Awards are a prestigious funding opportunity for early career researchers. Only 83 researchers have received funding of hundreds of applications, and only 27 of those are national laboratory researchers. Four scientists from Argonne have received funding.

Artificial Intelligence Agents Argue to Enhance the Speed of Materials Discovery

Researchers have developed a new artificial intelligence (AI)-powered approach to analyzing X-ray diffraction (XRD) data. The X-ray Crystallography companion Agent (XCA) approach assembles a group of AIs that debate each other while analyzing live streaming X-ray data. Once the AIs cast their final votes, the XCA approach uses the vote tally to interpret what the most likely atomic structure is and to suggest how confident the researchers should be of the AI analysis. The AI analysis matches human effectiveness but takes just seconds.

Lasers trigger magnetism in atomically thin quantum materials

Researchers discovered that light can trigger a form of magnetism in a normally nonmagnetic material. This magnetism centers on the behavior of electron “spin.” By controlling & aligning electron spin at this level of detail & accuracy, this platform could have applications in quantum computing & simulation.

Key witness helps scientists detect ‘spooky’ quantum entanglement in solid materials

Quantum entanglement occurs when two particles appear to communicate without a physical connection, a phenomenon Albert Einstein famously called “spooky action at a distance.” Nearly 90 years later, a team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Laboratory Will Illuminate Formation, Composition, Activity of Comets

In Review of Scientific Instruments, researchers have developed a laboratory to simulate comets in space-like conditions. The goal of the Comet Physics Laboratory is to understand the internal structure of comets, as well as how their constituent materials form and react. Many of the lab’s future experiments will involve creating sample comet materials with differing compositions. By testing those materials in the space-like chamber, the researchers can compare each sample to what has been observed on actual comets.

Climate Champion Professor Mihri Ozkan discusses recent advances in the development and application of CO2 capture materials and also addresses the main challenges that need to be overcome in order to bring these material technologies to the market.

Mihri Ozkan, professor of the Electrical and Computer Engineering Department at the University of California, Riverside, will be discussing her team’s research at the upcoming 2021 MRS Fall Meeting in Boston. See Symposium EN13-Climate Change Mitigation Technologies. The pace of…

Laser treatment shows potential for reducing industrial chemical processing for vehicles

A multidisciplinary team from the Department of Energy’s Oak Ridge National Laboratory has applied a laser-interference structuring technique that makes significant strides toward eliminating the need for hazardous chemicals for corrosion protection in military vehicles and aircraft systems.