Laser treatment shows potential for reducing industrial chemical processing for vehicles

A multidisciplinary team from the Department of Energy’s Oak Ridge National Laboratory has applied a laser-interference structuring technique that makes significant strides toward eliminating the need for hazardous chemicals for corrosion protection in military vehicles and aircraft systems.

Cao receives Young Investigator Award from American Chemical Society

Pengfei Cao, a polymer chemist at the Department of Energy’s Oak Ridge National Laboratory, has been chosen to receive a 2021 Young Investigator Award from the Polymeric Materials: Science and Engineering Division of the American Chemical Society.

Toward Scaling Up Nanocages to Trap Noble Gases

Commercially available materials may be a potentially scalable platform for trapping gases for nuclear energy and other applications.

One scientist’s trash is another’s treasure:

While making materials samples to pursue their own research goals, scientists at the U.S. Department of Energy’s Ames Laboratory discovered that an unwanted byproduct of their experiments was an extremely high-quality and difficult-to-obtain substance sought after by scientists researching layered materials.

Quantum Materials Cloak Thermal Radiation

Scientists demonstrated that ultrathin films of samarium nickel oxide can mask the thermal radiation emitted by hot materials. This is due to the material undergoing a gradual transition from insulator to conductor. This study shows that quantum materials such as samarium nickel oxide can manage thermal radiation with potential applications in infrared camouflage, privacy shielding, and heat transfer control.

Lighting the Way for Nanotube Innovation

Scientists have learned how to place crystalline defects in new materials with atomic-scale precision. This enables materials that can control excitons—energy carriers similar to subatomic particles. New research reveals how to create local energy wells that “capture” the excitons. This small but important step could lead to smaller, more efficient components for optical telecommunications.

Quantum Computing Enables Unprecedented Materials Science Simulations

Researchers have for the first time used a quantum computer to generate accurate results from materials science simulations that can be verified with practical techniques. Eventually, such simulations on quantum computers could be more accurate and complex than simulations on classical digital computers.

Shih-Ting (Christine) Wang: Designing Materials for Biomedicine

Using DNA-based assembly, the Center for Functional Nanomaterials postdoc has assembled functional proteins into ordered lattices and coated nanostructures for drug delivery.

“Greening” Biomaterials and Scaffolds Used in Regenerative Medicine

In the biomaterials industry, electrospinning is a ubiquitous fabrication method used to produce nano- to microscale fibrous meshes that closely resemble native tissue architecture. Alas, the process has traditionally used solvents that not only are environmentally hazardous but also a significant barrier to industrial scale-up, clinical translation, and widespread use. But now, Columbia Engineering researchers report that they have developed a “green electrospinning” process that addresses those challenges, from managing environmental risks of volatile solvent storage and disposal at large volumes to meeting health and safety standards during both fabrication and implementation.

Automatically Steering Experiments Toward Scientific Discovery

Scientists at Brookhaven and Lawrence Berkeley National Laboratories have been developing an automated experimental setup of data collection, analysis, and decision making.

FSU researchers discover pine sap-based plastic, a potential change for future of sustainable materials

Over the past 100 years, plastics and polymers have changed the way the world operates, from airplanes and automobiles to computers and cell phones — nearly all of which are composed of fossil fuel-based compounds. A Florida State University research team’s discovery of a new plastic derived from pine sap has the potential to be a gamechanger for new sustainable materials.

Main Attraction: Scientists Create World’s Thinnest Magnet

Scientists at Berkeley Lab and UC Berkeley have created an ultrathin magnet that operates at room temperature. The ultrathin magnet could lead to new applications in computing and electronics – such as spintronic memory devices – and new tools for the study of quantum physics.

Calling all couch potatoes: this finger wrap can let you power electronics while you sleep

A new wearable device turns the touch of a finger into a source of power for small electronics and sensors. Engineers at the University of California San Diego developed a thin, flexible strip that can be worn on a fingertip and generate small amounts of electricity when a person’s finger sweats or presses on it. What’s special about this sweat-fueled device is that it generates power even while the wearer is asleep or sitting still.

How to Make Lithium-ion Batteries Invincible

Berkeley Lab scientists have made significant progress in developing battery cathodes using a new class of materials that provide batteries with the same if not higher energy density than conventional lithium-ion batteries but can be made of inexpensive and abundant metals. Known as DRX, which stands for disordered rocksalts with excess lithium, this novel family of materials was invented less than 10 years ago and allows cathodes to be made without nickel or cobalt.

Internships Put Futures in Flight

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Two Henry Samueli School of Engineering scientists win DOE early career awards

Irvine, Calif., May 27, 2021 — The U.S. Department of Energy Office of Science has awarded funding to two University of California, Irvine scientists under its DOE Early Career Research Program. Mohammad Abdolhosseini Qomi, assistant professor of civil and environmental engineering, and Penghui Cao, assistant professor of mechanical and aerospace engineering, were among 83 researchers selected from university and national laboratory applicants to receive the research awards.

Clingy Copper Ions Contribute to Catalyst Slowdown

PNNL scientists, working with researchers at Washington State University and Tsinghua University, discovered a mechanism behind the decline in performance of an advanced copper-based catalyst. The team’s findings, featured on the cover of the journal ACS Catalysis, could aid the design of catalysts that work better and last longer during the NOx conversion process.

ORNL’s Sergei Kalinin elected Fellow of the Microscopy Society of America

Sergei Kalinin, a scientist and inventor at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the Microscopy Society of America professional society.

A silver lining for extreme electronics

Tomorrow’s cutting-edge technology will need electronics that can tolerate extreme conditions. That’s why a group of researchers led by Michigan State University’s Jason Nicholas is building stronger circuits today. Nicholas and his team have developed more heat resilient silver circuitry with an assist from nickel. The team described the work, which was funded by the U.S. Department of Energy Solid Oxide Fuel Cell Program, on April 15 in the journal Scripta Materialia. The types of devices that the MSU team is working to benefit — next-generation fuel cells, high-temperature semiconductors and solid oxide electrolysis cells — could have applications in the auto, energy and aerospace industries.

The Future Looks Bright for Infinitely Recyclable Plastic

Plastics are ubiquitous, but they’re not practical. Less than 10% are recycled, and the other ~8 billion tons are creating a pollution crisis. A Berkeley Lab team is determined to change that. A new analysis shows producing and recycling their game-changing new plastic could be easy and cheap enough to leave old plastics in the dust.

This hydrogen fuel machine could be the ultimate guide to self improvement

Scientists at Berkeley have uncovered an extraordinary self-improving property that transforms an ordinary semiconductor into a highly efficient and stable artificial photosynthesis device

April Snapshots

Science Snapshots from Berkeley Lab: X-rays accelerate battery R&D; infrared microscopy goes off grid; substrates support 2D tech