A Talented 2D Material Gets a New Gig

Berkeley Lab scientists tap into graphene’s hidden talent as an electrically tunable superconductor, insulator, and magnetic device for the advancement of quantum information science

Read more

Columbia Researchers Develop New Method to Isolate Atomic Sheets and Create New Materials

Columbia researchers have invented a new method—using ultraflat gold films—to disassemble vdW single crystals layer by layer into monolayers with near-unity yield and with dimensions limited only by bulk crystal sizes. The monolayers have the same high quality as those created by conventional “Scotch tape” exfoliation, but are roughly a million times larger. They can be assembled into macroscopic artificial structures, with properties not easily created in conventionally grown bulk crystals.

Read more

Breaking (and Restoring) Graphene’s Symmetry in a Twistable Electronics Device

A recent Columbia Engineering study demonstrates a new way to tune the properties of 2D materials simply by adjusting the twist angle between them. The researchers built devices consisting of monolayer graphene encapsulated between two crystals of boron nitride and, by adjusting the relative twist angle between the layers, they were able to create multiple moiré pattern—“the first time anyone has seen the full rotational dependence of coexisting moiré superlattices in one device.”

Read more

Better Biosensor Technology Created for Stem Cells

A Rutgers-led team has created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders. The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons), according to a study in the journal Nano Letters.

Read more

Living on the Edge: How a 2D Material Got Its Shape

A team of scientists led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has gained valuable insight into 3D transition metal oxide nanoparticles’ natural “edge” for 2D growth.

Read more

Physicists Make Graphene Discovery that Could Help Develop Superconductors

When two mesh screens are overlaid, beautiful patterns appear when one screen is offset. These “moiré patterns” have long intrigued artists, scientists and mathematicians and have found applications in printing, fashion and banknotes. Now, a Rutgers-led team has paved the way to solving one of the most enduring mysteries in materials physics by discovering a moiré pattern in graphene, where electrons organize themselves into stripes, like soldiers in formation.

Read more