Using Ion Beams to Improve Brain Microscopy

Improving the way scientists can see the microscopic structures of the brain can improve our understanding of a host of brain diseases, like Alzheimer’s or multiple sclerosis. Studying these diseases is challenging and has been limited by accuracy of available models.To see the smallest parts of cells, scientists often use a technique called electron microscopy.

Previously Overlooked Algae Toxin Widespread in Southern Indian River Lagoon

Pseudo-nitzschia spp., an algae that produces the neurotoxin domoic acid, can bioaccumulate within food webs causing harm to humans and animals. A molecular study of Florida’s Indian River Lagoon shows this algae was present in 87 percent of the water samples collected. All isolates showed toxicity, and domoic acid was found in 47 percent of surface water samples. As a nursery for many organisms that supports a high amount of biodiversity, the presence of domoic acid could negatively impact the lagoon system.

See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight

MADISON — For the first time, researchers can get a high-resolution view of single blood stem cells thanks to a little help from microscopy and zebrafish.Researchers at the University of Wisconsin–Madison and the University of California San Diego have developed a method for scientists to track a single blood stem cell in a live organism and then describe the ultrastructure, or architecture, of that same cell using electron microscopy.

Tracking Pileups on Battery Charging Route to Drive Performance

An understanding of this mechanism could help scientists increase the total amount of energy stored by next-generation lithium-ion batteries.

This crystal impurity is sheer perfection

Scientists at Berkeley Lab and UC Berkeley have developed a nanoparticle composite that grows into 3D crystals. The new 3D-grown material could speed up production and eliminate errors in the mass manufacturing of nanoscale photonics for smart buildings or actuators for robotics.

Mouse brain imaged from the microscopic to the macroscopic level

Researchers at the University of Chicago and the U.S. Department of Energy’s (DOE) Argonne National Laboratory have leveraged existing advanced X-ray microscopy techniques to bridge the gap between MRI (magnetic resonance imaging) and electron microscopy imaging, providing a viable pipeline for multiscale whole brain imaging within the same brain

ORNL’s Sergei Kalinin elected Fellow of the Microscopy Society of America

Sergei Kalinin, a scientist and inventor at the Department of Energy’s Oak Ridge National Laboratory, has been elected a Fellow of the Microscopy Society of America professional society.

ORNL’s superb materials expertise, data and AI tools propel progress

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Science Snapshots From Berkeley Lab – Week of March 29, 2021

India’s Ambitious Clean Energy Goals, a Secret Pathway to Harnessing the Sun for Clean Energy, and a Supersmart Gas Sensor for Asthmatics

Revealing Nano Big Bang – Scientists Observe the First Milliseconds of Crystal Formation

At Berkeley Lab’s Molecular Foundry, scientists recruited a world-leading microscope to capture atomic-resolution, high-speed images of gold atoms self-organizing, falling apart, and then reorganizing many times before settling into a stable, ordered crystal.

Nikhil Tiwale: Practicing the Art of Nanofabrication

Applying his passions for science and art, Nikhil Tiwale—a postdoc at Brookhaven Lab’s Center for Functional Nanomaterials—is fabricating new microelectronics components.

Study: Turning a coronavirus protein into a nanoparticle could be key to an effective COVID-19 vaccine

One of the proteins on the virus – located on the characteristic COVID spike – has a component called the receptor-binding domain, or RBD, which is its “Achilles heel.” That is, he said, antibodies against this part of the virus have the potential to the neutralize the virus.

October 27, 2020 Web Feature Enabling the Data-Driven Future of Microscopy

An international research team led by PNNL has published a vision for electron microscopy infused with the latest advances in data science and artificial intelligence. Writing a commentary in Nature Materials, the team proposes a highly integrated, autonomous, and data-driven microscopy architecture to address challenges in energy storage, quantum information science, and materials design.

2D Electronics Get an Atomic Tuneup

Scientists at Berkeley Lab have demonstrated a new technique that could improve the performance of atomically thin semiconductors for next-generation electronics such as optoelectronics, thermoelectrics, and sensors.

Pioneering method reveals dynamic structure in HIV

The method reveals that the lattice, which forms the major structural component of the human immunodeficiency virus (HIV), is dynamic. The discovery of a diffusing lattice made from Gag and GagPol proteins, long considered to be completely static, opens up potential new therapies. The method can be applied to biomedical structure.

Peering into Functioning Batteries with Sooyeon Hwang

Using electron microscopes, Hwang—a materials scientist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN)—characterizes the structure and chemistry of operating battery electrode materials.