How a Record-Breaking Copper Catalyst Converts CO2 Into Liquid Fuels

Since the 1970s, scientists have known that copper has a special ability to transform carbon dioxide into valuable chemicals and fuels. But for many years, scientists have struggled to understand how this common metal works as an electrocatalyst, a mechanism that uses energy from electrons to chemically transform molecules into different products.

In an Advance for Solar Fuels, Hybrid Materials Improve Photocatalytic Carbon Dioxide Reduction

Scientists are working to transform carbon dioxide into chemical solar fuels. To advance this process, researchers have identified a new hybrid material that consists of a light-absorbing semiconductor and a cobalt catalyst. The research extends scientific efforts to identify new ways to store energy and to efforts to understand how light-absorbing hybrid systems can drive the catalytic production of chemical fuels using solar energy.

This hydrogen fuel machine could be the ultimate guide to self improvement

Scientists at Berkeley have uncovered an extraordinary self-improving property that transforms an ordinary semiconductor into a highly efficient and stable artificial photosynthesis device

Science Snapshots From Berkeley Lab – Week of March 29, 2021

India’s Ambitious Clean Energy Goals, a Secret Pathway to Harnessing the Sun for Clean Energy, and a Supersmart Gas Sensor for Asthmatics

Driving Water Splitting to Create Chemical Fuels

Scientists improved the performance of bismuth vanadate, an electrode material for converting solar energy to hydrogen—an energy-dense and clean-burning fuel.

Scientists Capture Candid Snapshots of Electrons Harvesting Light at the Atomic Scale

A team of scientists led by Berkeley Lab has gained important new insight into electrons’ role in the harvesting of light in artificial photosynthesis systems.

Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

UPTON, NY–The U.S. Department of Energy (DOE) has announced $40M in funding over five years for a new research center aimed at developing hybrid photoelectrodes for converting sunlight into liquid fuels. Chemists from DOE’s Brookhaven National Laboratory will be key partners in this effort, dubbed the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), which will be led by the University of North Carolina at Chapel Hill (UNC) and includes additional collaborators at Emory University, North Carolina State University, the University of Pennsylvania, and Yale.

Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

The Department of Energy has awarded $60 million to a new solar fuels initiative – called the Liquid Sunlight Alliance (LiSA) – led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

Catalysis Sees the Light

Scientists have revealed the exact structure of a catalyst that transforms carbon dioxide and water into liquid fuel in the presence of light. The researchers studied a specific promising catalyst, Copper(I) oxide. The research is an important step in the design of photocatalysts for the conversion of carbon dioxide into liquid fuels.

How JCAP Is Making Solar Fuels Shine

As we look back at a decade of discovery, we highlight 10 achievements by scientists at Berkeley Lab and the Joint Center for Artificial Photosynthesis that bring us closer to a solar fuels future.