Three Argonne researchers inducted into AAAS

John Mitchell, Valerie Taylor and Lisa Utschig were selected by the American Association for the Advancement of Science (AAAS) to be inducted as fellows.

Argonne announces 2022 Postdoctoral Performance Awards

Nine postdoctoral appointees were recognized with Postdoctoral Performance Awards.

Researchers Create Smaller, Cheaper Flow Batteries for Clean Energy

Flow batteries offer a solution. Electrolytes flow through electrochemical cells from storage tanks in this rechargeable battery. The existing flow battery technologies cost more than $200/kilowatt hour and are too expensive for practical application, but Liu’s lab in the School of Chemical and Biomolecular Engineering (ChBE) developed a more compact flow battery cell configuration that reduces the size of the cell by 75%, and correspondingly reduces the size and cost of the entire flow battery. The work could revolutionize how everything from major commercial buildings to residential homes are powered.

Entrepreneurship program at Argonne National Laboratory opens applications for startups

Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is accepting applications for its next fellowship cohort.

Argonne researchers win four 2022 R&D 100 awards

R&D Magazine has recognized four Argonne projects with R&D 100 Awards.

Eight Columbia Engineering Professors Win NSF CAREER Awards

Eight professors from Columbia Engineering are among this year’s recipients of the National Science Foundation’s (NSF) Early Career Development (CAREER) awards, one of the most prestigious recognitions for junior researchers. Their areas of expertise will contribute to gains in personalized cancer treatment, the analysis of cellular processes, distributed control in large-scale systems, quantum information theory, understanding multiphase flows, as well as cloud computing and storage operations.

Press registration opens for the hybrid ACS Fall 2022 meeting

The American Chemical Society’s ACS Fall 2022 will be held virtually and in Chicago Aug. 21–25 with the theme “Sustainability in a Changing World.” ACS considers requests for press credentials and complimentary meeting registration from reporters and public information officers at selected institutions.

Chemical Institute of Canada Gives Top Honor to University of Oklahoma Engineering Professor

The 2022 Robert B. Anderson Catalysis Award from the Chemical Institute of Canada’s Catalysis Division was presented to University of Oklahoma engineering professor Daniel Resasco, Ph.D., for his research that deepens the understanding of chemical reactions in the production of sustainable energy.

New research may revise a theory of reacting flow

The research team of Tokyo University of Agriculture and Technology (TUAT) for the first time clearly demonstrates that the effect on the flow reverses according to the degree of change in the properties due to the reaction in a reacting flow with production of viscoelastic material, through experiments involving high-precision rheological measurements and a newly proposed theory.

Science snapshots from Berkeley Lab

New Berkeley Lab breakthroughs: engineering chemical-producing microbes; watching enzyme reactions in real time; capturing the first image of ‘electron ice’; revealing how skyrmions really move

Combining sunlight and wastewater nitrate to make the world’s No. 2 chemical

Engineers at the University of Illinois Chicago have created a solar-powered electrochemical reaction that not only uses wastewater to make ammonia — the second most-produced chemical in the world — but also achieves a solar-to-fuel efficiency that is 10 times better than any other comparable technology.

Microspheres Quiver When Shocked

A challenging frontier in science and engineering is controlling matter outside of thermodynamic equilibrium to build material systems with capabilities that rival those of living organisms. Research on active colloids aims to create micro- and nanoscale “particles” that swim through viscous fluids like primitive microorganisms. When these self-propelled particles come together, they can organize and move like schools of fish to perform robotic functions, such as navigating complex environments and delivering “cargo” to targeted locations.

New NUS technology completes vital class of industrial reactions five times faster

Researchers from NUS Engineering have developed a new method to increase the rate of an important chemical reaction known as hydrogenation by more than 5 times. Hydrogenation is used in the production of everyday items like plastics, fertilisers, and pharmaceuticals. The NUS team’s novel approach is a more direct and effective method that can lead to higher yields for industries and lower environmental impacts.

A silver lining for extreme electronics

Tomorrow’s cutting-edge technology will need electronics that can tolerate extreme conditions. That’s why a group of researchers led by Michigan State University’s Jason Nicholas is building stronger circuits today. Nicholas and his team have developed more heat resilient silver circuitry with an assist from nickel. The team described the work, which was funded by the U.S. Department of Energy Solid Oxide Fuel Cell Program, on April 15 in the journal Scripta Materialia. The types of devices that the MSU team is working to benefit — next-generation fuel cells, high-temperature semiconductors and solid oxide electrolysis cells — could have applications in the auto, energy and aerospace industries.

Do You Know the Way to Berkelium, Californium?

Scientists at Berkeley Lab have demonstrated how to image samples of heavy elements as small as a single nanogram. The new approach will help scientists advance new technologies for medical imaging and cancer therapies.

Research promotes ‘doubly green’ renewable energy captured from biowaste

Cities around the United States could use their own biowaste from food scraps or manure to produce renewable energy for vehicles to the tune of $10 billion a year, according to a researcher at Missouri S&T. The proposed operation creates renewable natural gas (RNG) from biowaste and renewable hydrogen (RH2) from surplus electricity generated by solar or wind energy.

Better together: Scientists discover far-reaching applications of nanoparticles made of multiple elements

As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles.

UCI engineers reveal molecular secrets of cephalopod powers

Irvine, Calif., Dec. 17, 2020 — Reflectins, the unique structural proteins that give squids and octopuses the ability to change colors and blend in with their surroundings, are thought to have great potential for innovations in areas as diverse as electronics, optics and medicine. Scientists and inventors have been stymied in their attempts to fully utilize the powers of these biomolecules due to their atypical chemical composition and high sensitivity to subtle environmental changes.

Microfluidics helps MTU engineers watch viral infection in real time

Watching a viral infection happen in real time is like a cross between a zombie horror film, paint drying, and a Bollywood epic on repeat. Over a 10-hour span, chemical engineers from Michigan Tech watched viral infections happen with precision inside a microfluidics device and can measure when the infection cycle gets interrupted by an antiviral compound.

High-precision electrochemistry: The new gold standard in fuel cell catalyst development

As part of an international collaboration, scientists at Argonne National Laboratory have made a pivotal discovery that could extend the lifetime of fuel cells that power electric vehicles by eliminating the dissolution of platinum catalysts.

‘Artificial Chemist’ Combines AI, Robotics to Conduct Autonomous R&D

Researchers have developed a technology called “Artificial Chemist,” which incorporates artificial intelligence and an automated system for performing chemical reactions to accelerate R&D and manufacturing of commercially desirable materials.

Investigating the dynamics of stability

Scientists have gained important insight into the mechanisms that drive stability and activity in materials during oxygen evolution reactions. This insight will guide the practical design of materials for electrochemical fuel production.

Crab-shell and seaweed compounds spin into yarns for sustainable and functional materials

Researchers from Aalto University, the University of São Paulo and the University of British Columbia have found a way to make a new kind of fibre from a combination of chitin nanoparticles, extracted from residual blue crab shells and alginate, a compound found in seaweed.

$1.7 M grant to Wayne State College of Engineering aims to improve oral delivery of insulin

With the help of a $1.7 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, a team of researchers in Wayne State’s College of Engineering will explore ways to address urgent need for a safe and efficient oral delivery technology for insulin to improve the lives of diabetes patients.