MSK: Cancer Isn’t Sheltering in Place

As the height of the COVID-19 outbreak in New York City and the Tri-State area begins to subside, Memorial Sloan Kettering Cancer Center oncologists are urging patients to schedule cancer screenings and treatments now – as the long-term toll of missed diagnoses and delayed treatments could be devastating for patients and their loved ones across the region and the country.

Read more

Cancer treatment with immune checkpoint inhibitors may lead to thyroid dysfunction

Thyroid dysfunction following cancer treatment with new treatments called immune checkpoint inhibitors is more common than previously thought, according to research that was accepted for presentation at ENDO 2020, the Endocrine Society’s annual meeting, and will be published in a special supplemental section of the Journal of the Endocrine Society.

Read more

Investigational drugs block bone loss in mice receiving chemotherapy

Studying mice, researchers from Washington University School of Medicine in St. Louis have found a driver of bone loss related to cancer treatment — cellular senescence. This process is independent of hormones related to bone health, such as estrogen. Such bone loss can be stopped by treating the mice with either of two investigational drugs already being evaluated in clinical trials.

Read more

Ultrasound Selectively Damages Cancer Cells When Tuned to Correct Frequencies

Doctors have used focused ultrasound to destroy tumors without invasive surgery for some time. However, the therapeutic ultrasound used in clinics today indiscriminately damages cancer and healthy cells alike. Researchers have now developed a low-intensity ultrasound approach that exploits the properties of tumor cells to target them and provide a safer option. Their findings, reported in Applied Physics Letters, are a new step in oncotripsy, the singling out and killing of cancer cells based on their physical properties.

Read more

NUS researchers use light emitted from nanoparticles to intricately control biological processes

Researchers from the National University of Singapore have developed a method to give more control to optogenetics, by using specially designed nanoparticles and nanoclusters (dubbed ‘superballs’). These nanoparticles and superballs can emit different colours of light when excited by lasers at different wavelengths. These different colours of light can then be used to trigger specific biological processes.

Read more