E-waste eating protein creates rare earth elements

Lawrence Livermore National Laboratory (LLNL) researchers, in collaboration with Pennsylvania State University (PSU) and Idaho National Laboratory (INL), have designed a new process, based on a naturally occurring protein, that could extract and purify rare earth elements (REE) from low-grade sources. It could offer a new avenue toward a more diversified and sustainable REE sector for the United States. The protein, lanmodulin, enables a one-step extraction and purification of (REE)s from complex metal mixtures, including electronic waste and coal byproducts.

Read more

Targeting SARS-CoV-2 Enzyme with Inhibitors

As the COVID-19 pandemic continues to spread, many researchers are studying epidemiological models to predict its propagation. However, a mathematician and expert in complex systems decided to focus on finding targets within SARS-CoV-2 for new drugs to attack. In the journal Chaos, he discusses the dramatic increase in the sensitivity of the main protease of SARS-CoV-2 to small disturbances, which made him suspect there is a role for inhibitors to play in killing the virus.

Read more

Algae in the Oceans Often Steal Genes from Bacteria

Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.
The study of 23 species of brown and golden-brown algae, published in the journal Science Advances, shows for the first time that gene acquisition had a significant impact on the evolution of a massive and ancient group of algae and protists (mostly one-celled organisms including protozoa) that help form the base of oceanic food webs.

Read more

Composing New Proteins with Artificial Intelligence

Proteins are the building blocks of life and scientists have long studied how to improve them or design new ones. Traditionally, new proteins are created by mimicking existing proteins or manually editing their amino acids. This process is time-consuming, and it is difficult to predict the impact of changing an amino acid. In APL Bioengineering, researchers explore how to create new proteins by using machine learning to translate protein structures into musical scores, presenting an unusual way to translate physics concepts across domains.

Read more

Catch and release: MTU biochemists purify proteins with a fishing technique

Protein purification is a multibillion-dollar industry. A new purification process developed by Michigan Tech biochemists, called capture and release (CaRe), is a lot like catch and release fishing. It comes down to the picking the right lure to bait a specific protein and CaRe speeds up protein purification while also lowering costs.

Read more

Opening Up DNA to Delete Disease

Protein editorial assistants are clearing the way for cut-and-paste DNA editors, like CRISPR, to access previously inaccessible genes of interest. Opening up these areas of the genetic code is critical to improving CRISPR efficiency and moving toward futuristic, genetic-based assaults on disease. The DNA-binding editorial assistants were devised by a U.S.-based team of bioengineers, who describe their design in APL Bioengineering.

Read more