Protein p53 regulates learning, memory, sociability in mice

Researchers at the Beckman Institute for Advanced Science and Technology have established the protein p53 as critical for regulating sociability, repetitive behavior, and hippocampus-related learning and memory in mice, illuminating the relationship between the protein-coding gene TP53 and neurodevelopmental and psychiatric disorders.

MD Anderson Research Highlights for July 27, 2022

Clinical advances include treating hematologic cancers with effective targeted therapies, circulating tumor DNA as a biomarker for recurrence with colorectal liver metastases, and using magnetic resonance imaging (MRI) to guide surgical decisions for patients with lateral pelvic lymph node metastases in rectal cancer. Laboratory findings offer new understanding of the pancreatic cancer immune microenvironment, melanoma cell states, TP53 mutation status in acute myeloid leukemia (AML), and potential targets for metastatic prostate cancer and GNAS-mutant colorectal cancer.

MD Anderson Research Highlights for August 11, 2021

Current advances include insights into anti-tumor responses, a targeted therapy combination for biliary tract cancers, biomarkers that may predict response to DNA damage repair inhibitors, a “virtual biopsy” using artificial intelligence to characterize tumors, new targeted and immunotherapy approaches for pancreatic cancer, understanding the impact of TP53 mutations on acute myeloid leukemia treatments, as well as a new strategy to overcome treatment-resistant KRAS-mutant lung cancer.

New drug combination shows promise as powerful treatment for AML

Scientists have identified two drugs that are potent against acute myeloid leukemia (AML) when combined, but only weakly effective when used alone. The researchers were able to significantly enhance cancer cell death by jointly administering the drugs that are only partially effective when used as single-agent therapies.