The art of molecular self-assembly: crafting 2D nanostructures for advanced materials

Researchers have made significant strides in nanotechnology with the discovery of a method to self-assemble block molecules into sophisticated two-dimensional (2D) nanopatterns. This innovative approach allows for meticulous crafting of materials at the nanoscale, surpassing the limitations of conventional lithography. The article illuminates the path for developing advanced nanostructures with applications in nanotechnology, promising a new era of material design and fabrication.

Three Argonne postdocs invited to prestigious meeting of Nobel laureates

Three Argonne postdoc scientists have been invited to the prestigious Nobel Laureate Meetings in Lindau, Germany, where they will meet with past Nobel Prize winners in their fields.

What can we do about all the plastic waste?

The Institute for the Cooperative Upcycling of Plastics (iCOUP) is helping to address the plastic waste accumulation problem by developing the science needed to turn used plastic into valuable materials.

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

Entrepreneurship program at Argonne National Laboratory opens applications for startups

Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is accepting applications for its next fellowship cohort.

The futuristic South Pole Telescope looks far back in time

Designed to detect the oldest light in the universe, the South Pole Telescope is helping researchers at Argonne and around the world to learn about the beginnings of the universe.

Building Tough 3D Nanomaterials with DNA

Columbia Engineering researchers, working with Brookhaven National Laboratory, report today that they have built designed nanoparticle-based 3D materials that can withstand a vacuum, high temperatures, high pressure, and high radiation. This new fabrication process results in robust and fully engineered nanoscale frameworks that not only can accommodate a variety of functional nanoparticle types but also can be quickly processed with conventional nanofabrication methods.

New X-Ray Camera Achieves New Heights of Precision and Accuracy for Better Experiments

Scientists use incredibly bright and fast pulses of X-rays produced by an X-ray free electron laser to study some of the fastest reactions and processes in materials. Scientists recently developed a new X-ray imager with much greater precision and accuracy than possible before. The new levels are less than one hundredth of an X-ray wavelength, even smaller than an Angstrom.

Nikhil Tiwale: Practicing the Art of Nanofabrication

Applying his passions for science and art, Nikhil Tiwale—a postdoc at Brookhaven Lab’s Center for Functional Nanomaterials—is fabricating new microelectronics components.

Making 3-D Nanosuperconductors with DNA

Scientists developed a platform for making 3-D superconducting nano-architectures with a prescribed organization.

Stabilizing Water Loss in Synthetic Trees

Scientists are developing “synthetic trees” that work like their natural counterparts to serve in specific applications. In an important step, scientists fabricated synthetic leaves using nanoporous disks that control moisture at the scale of molecules to mimic natural transpiration. The disks use a novel, layered design topped with silicon pores to trap water vapor.