Rutgers Engineers Developing Rapid Breathalyzer Test for COVID-19

New Brunswick, N.J. (April 30, 2021) – Rutgers University–New Brunswick engineering professors Edward P. DeMauro, German Drazer, Hao Lin and Mehdi Javanmard are available for interviews on their work to develop a new type of fast-acting COVID-19 sensor that detects the presence…

Argonne’s 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

The Department of Energy’s Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.

Biomedical engineers develop ‘smart’ sensor bandages

Researchers at Missouri S&T are working to make telemedicine more successful by creating an oxygen-sensing patch printed on a flexible, disposable bandage. It could enable remote monitoring for the early detection of illnesses such as pressure ulcers, allowing for immediate treatment.

Breaking the Power & Speed Limit of Lasers

SUMMARYResearchers at the George Washington University have developed a new design of vertical-cavity surface-emitting laser (VCSEL) that demonstrates record-fast temporal bandwidth. This was possible by combining multiple transverse coupled cavities, which enhances optical feedback of the laser. VCSELs have emerged…

UCI biochip innovation combines AI and nanoparticle printing for cancer cell analysis

Irvine, Calif., Oct. 7, 2020 – Electrical engineers, computer scientists and biomedical engineers at the University of California, Irvine have created a new lab-on-a-chip that can help study tumor heterogeneity to reduce resistance to cancer therapies. In a paper published today in Advanced Biosystems, the researchers describe how they combined artificial intelligence, microfluidics and nanoparticle inkjet printing in a device that enables the examination and differentiation of cancers and healthy tissues at the single-cell level.

Power Player: Engineering professor researches how to keep America’s lights on

Ning Zhou from Binghamton University, State University of New York received a National Science Foundation (NSF) CAREER Award to provide a 21st-century vision for power systems.

New Device Can Measure Toxic Lead Within Minutes

Rutgers researchers have created a miniature device for measuring trace levels of toxic lead in sediments at the bottom of harbors, rivers and other waterways within minutes – far faster than currently available laboratory-based tests, which take days. The affordable lab-on-a-chip device could also allow municipalities, water companies, universities, K-12 schools, daycares and homeowners to easily and swiftly test their water supplies. The research is published in the IEEE Sensors Journal.

UCI cyber-physical security researchers highlight vulnerability of solar inverters

Irvine, Calif., Aug. 18, 2020 – Cyber-physical systems security researchers at the University of California, Irvine can disrupt the functioning of a power grid using about $50 worth of equipment tucked inside a disposable coffee cup. In a presentation delivered at the recent Usenix Security 2020 conference, Mohammad Al Faruque, UCI associate professor of electrical engineering & computer science, and his team revealed that the spoofing mechanism can generate a 32 percent change in output voltage, a 200 percent increase in low-frequency harmonics power and a 250 percent boost in real power from a solar inverter.


Tingyi Gu, an assistant professor of electrical and computer engineering at the University of Delaware, has been selected for the Army Research Office Young Investigator Program. This prestigious award goes to early-career researchers pursuing fundamental research in areas relevant to the Army. Gu is studying materials that exploit the interface between light and electronics for potential use in lasers, displays, memory and more.

$345K NSF grant to fund research to modify paper electronics to make them stretchable

A three-year, $345,000 grant from the National Science Foundation will fund research at Binghamton University, State University of New York that seeks to modify paper’s mechanical properties while still retaining its advantages.

Toward a low-cost, low-power wearable sensor for temperature and respiration

Engineers at the University of California San Diego are developing low-cost, low-power wearable sensors that can measure temperature and respiration–key vital signs used to monitor COVID-19. The devices would transmit data wirelessly to a smartphone, and could be used to monitor patients for viral infections that affect temperature and respiration in real time. The research team plans to develop a device and a manufacturing process in just 12 months.

Breaking the Size and Speed Limit of Modulators: The Workhorses of the Internet

SUMMARYResearchers developed and demonstrated for the first time a silicon-based electro-optical modulator that is smaller, as fast as and more efficient than state-of-the-art technologies. By adding indium tin oxide (ITO) – a transparent conductive oxide found in touchscreen displays and…

Paramagnetic Spins Take Electrons for a Ride, Produce Electricity from Heat

Local thermal perturbations of spins in a solid can convert heat to energy even in a paramagnetic material – where spins weren’t thought to correlate long enough to do so. This effect, “paramagnon drag thermopower,” converts a temperature difference into an electrical voltage.