Detecting, Exploiting Non-Line-of-Sight Paths for Terahertz Signals in Wireless Communications

After developing a link discovery method in 2020 using terahertz radiation, Rice and Brown researchers addressed what would happen if a wall or other reflector creates a non-line-of-sight path from the base station to the receiver. In APL Photonics, they consider two different generic types of transmitters and explore how their characteristics can be used to determine whether an NLOS path contributes to the signal received by the receiver.

Quantum tunneling in graphene advances the age of terahertz wireless communications

Scientists from MIPT, Moscow Pedagogical State University and the University of Manchester have created a highly sensitive terahertz detector based on the effect of quantum-mechanical tunneling in graphene. The sensitivity of the device is already superior to commercially available analogs based on semiconductors and superconductors, which opens up prospects for applications of the graphene detector in wireless communications, security systems, radio astronomy, and medical diagnostics. The research results are published in a high-rank journal Nature Communications.