Steering Wind Turbines Creates Greater Energy Potential

For wind farms, it is important to control upstream turbines in an efficient manner so downstream turbines are not adversely affected by upstream wake effects. In the Journal of Renewable and Sustainable Energy, researchers show that by designing controllers based on viewing the wind farm system as a coupled network, it is possible to extract power more efficiently.

Electric vehicles no environmental savior, could cause power grid problems

As Ford unveils its electric F150, West Virginia University experts note the shift from gasoline-powered engines is not an environmental panacea in the short term, but instead will mean significant and costly upgrades to the nation’s infrastructure. Citing recent events,…

New U.S. Carbon Monitor website compares emissions among the 50 states

Irvine, Calif., April 7, 2021 — Following last year’s successful launch of a global carbon monitor website to track and display greenhouse gas emissions from a variety of sources, an international team led by Earth system scientists from the University of California, Irvine is unveiling this week a new data resource focused on the United States.

Vice Presidential Vogue: Kamala Harris and White House Fashion

As Kamala Harris stood beside newly sworn-in President Joe Biden last week, all eyes were on her as she made history as the nation’s first female vice president.  But, much like other prominent women who have walked the halls of the White House before her, cultural experts expect that there will be  just as much focus on her fashion statements as on her political ones — and the scrutiny may be intensified as the first woman and person of color in the VP position takes on stereotypes surrounding Eurocentric standards of beauty.

Improving High-Energy Lithium-Ion Batteries with Carbon Filler

Lithium-ion batteries are the major rechargeable power source for many portable devices as well as electric vehicles, but their use is limited, because they do not provide high power output while simultaneously allowing reversible energy storage. Research reported in Applied Physics Reviews aims to offer a solution by showing how the inclusion of conductive fillers improves battery performance.

Power Player: Engineering professor researches how to keep America’s lights on

Ning Zhou from Binghamton University, State University of New York received a National Science Foundation (NSF) CAREER Award to provide a 21st-century vision for power systems.

UCI cyber-physical security researchers highlight vulnerability of solar inverters

Irvine, Calif., Aug. 18, 2020 – Cyber-physical systems security researchers at the University of California, Irvine can disrupt the functioning of a power grid using about $50 worth of equipment tucked inside a disposable coffee cup. In a presentation delivered at the recent Usenix Security 2020 conference, Mohammad Al Faruque, UCI associate professor of electrical engineering & computer science, and his team revealed that the spoofing mechanism can generate a 32 percent change in output voltage, a 200 percent increase in low-frequency harmonics power and a 250 percent boost in real power from a solar inverter.

Quantum Materials Quest Could Benefit From Graphene That Buckles

Graphene, an extremely thin two-dimensional layer of the graphite used in pencils, buckles when cooled while attached to a flat surface, resulting in beautiful pucker patterns that could benefit the search for novel quantum materials and superconductors, according to Rutgers-led research in the journal Nature. Quantum materials host strongly interacting electrons with special properties, such as entangled trajectories, that could provide building blocks for super-fast quantum computers. They also can become superconductors that could slash energy consumption by making power transmission and electronic devices more efficient.

3D-printed nuclear reactor promises faster, more economical path to nuclear energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods to confirm the consistency and reliability of its printed components.

Simple Self-Charging Battery Offers Power Solutions for Devices

A new type of battery combines negative capacitance and negative resistance within the same cell, allowing the cell to self-charge without losing energy, which has important implications for long-term storage and improved output power for batteries. In Applied Physics Reviews, researchers at the University of Porto and the University of Texas at Austin report making their very simple battery with two different metals, as electrodes and a lithium or sodium glass electrolyte between them.