Novel approach to advanced electronics, data storage with ferroelectricity

Latest research from Flinders University and UNSW Sydney, published in the American Chemical Society ACS Nano journal, explores switchable polarization in a new class of silicon compatible metal oxides and paves the way for the development of advanced devices including high-density data storage, ultra low energy electronics, flexible energy harvesting and wearable devices.

Accelerating Sustainable Semiconductors With ‘Multielement Ink’

Scientists have demonstrated “multielement ink” – the first “high-entropy” semiconductor that can be processed at low-temperature or room temperature. The new material could enable cost-effective and energy-efficient semiconductor manufacturing.

Professor receives grant to develop electronic devices made entirely of paper

A professor at Binghamton University, State University of New York has received a $400,000 grant from the National Science Foundation to develop electronic devices made entirely of paper.

How Scientists Are Accelerating Next-Gen Microelectronics

In a new Q&A, microelectronics expert and CHiPPS Director Ricardo Ruiz shares his perspective on keeping pace with Moore’s Law in the decades to come through a revolutionary technique called extreme ultraviolet lithography.

Simple ballpoint pen can write custom LEDs

Researchers working with Chuan Wang, an associate professor of electrical and systems engineering at the McKelvey School of Engineering at Washington University in St. Louis, have developed ink pens that allow individuals to handwrite flexible, stretchable optoelectronic devices on everyday materials including paper, textiles, rubber, plastics and 3D objects.

New material could hold key to reducing energy consumption in computers and electronics

A University of Minnesota Twin Cities team has, for the first time, synthesized a thin film of a unique topological semimetal material that has the potential to generate more computing power and memory storage while using significantly less energy.

Taking a lesson from spiders: NUS researchers create an innovative method to produce soft, recyclable fibres for smart textiles

Researchers from the National University of Singapore drew inspiration from the spider silk spinning process to fabricate strong, stretchable, and electrically conductive soft fibres. Their novel technique overcomes the challenges of conventional methods, which require complex conditions and systems. Such soft and recyclable fibres have a wide range of potential applications, such as a strain-sensing glove for gaming or a smart mask for monitoring breathing status for conditions such as obstructive sleep apnea.

Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry

University of Minnesota Twin Cities researchers, along with staff at the National Institute of Standards and Technology (NIST), have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.

What’s your gut telling you?

In a study published in Nature Electronics, Khalil B. Ramadi, Assistant Professor of Bioengineering at NYU Tandon School of Engineering, revealed that he and a team of collaborators at MIT and Caltech have developed a tiny pill-like electromagnetic device that, once swallowed, could provide medical professionals a diagnostic window into the inner workings of the gastrointestinal (GI) tract.

Two UCI researchers named fellows by the National Academy of Inventors

Irvine, Calif., Dec. 8, 2022 — The National Academy of Inventors has named two University of California, Irvine researchers as fellows for 2022. Philip Felgner, a pioneer in the development of lifesaving mRNA vaccines, and Payam Heydari, a prolific creator of cutting-edge microelectronics technologies, were both recognized for inventions that have made tangible impact on quality of life, economic development and the welfare of society.

Scientists Grow Lead-Free Solar Material With a Built-In Switch

A lead-free solar material developed by Berkeley Lab scientists offers a simpler and more sustainable approach to solar cell manufacturing. The advance could also benefit halide perovskites, a promising solar technology that requires much less energy to manufacture than silicon.

Latest Development of Meta-Devices: From Sensing and Imaging to Quantum Optical Chip

Professor Din-Ping Tsai, the Chair Professor of the Department of Electrical Engineering at the City University of Hong Kong (CityU), gave an online talk as part of the Hong Kong Institute for Advanced Study (HKIAS) Distinguished Lecture Series on Electronics and Photonics on 30 March 2022, titled “Meta-Devices: From Sensing and Imaging to Quantum Optical Chip”. Professor Hon Yan, Wong Chun Hong Professor of Data Engineering was the moderator.

Q&A: Making Earth-friendly electronics

April 21, 2022 The very components that make electronics fast and easy to use also make their disposal an environmental nightmare. Components of smartphones, computers and even kitchen appliances contain heavy metals and other compounds that are toxic to us…

LED Material Shines Under Strain

A team led by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley has demonstrated an approach for achieving LEDs with near 100% light-emission efficiency at all brightness levels.

Main Attraction: Scientists Create World’s Thinnest Magnet

Scientists at Berkeley Lab and UC Berkeley have created an ultrathin magnet that operates at room temperature. The ultrathin magnet could lead to new applications in computing and electronics – such as spintronic memory devices – and new tools for the study of quantum physics.

This crystal impurity is sheer perfection

Scientists at Berkeley Lab and UC Berkeley have developed a nanoparticle composite that grows into 3D crystals. The new 3D-grown material could speed up production and eliminate errors in the mass manufacturing of nanoscale photonics for smart buildings or actuators for robotics.

A silver lining for extreme electronics

Tomorrow’s cutting-edge technology will need electronics that can tolerate extreme conditions. That’s why a group of researchers led by Michigan State University’s Jason Nicholas is building stronger circuits today. Nicholas and his team have developed more heat resilient silver circuitry with an assist from nickel. The team described the work, which was funded by the U.S. Department of Energy Solid Oxide Fuel Cell Program, on April 15 in the journal Scripta Materialia. The types of devices that the MSU team is working to benefit — next-generation fuel cells, high-temperature semiconductors and solid oxide electrolysis cells — could have applications in the auto, energy and aerospace industries.

Battery parts can be recycled without crushing or melting

Researchers at Aalto University have discovered that electrodes in lithium batteries containing cobalt can be reused as is after being newly saturated with lithium. In comparison to traditional recycling, which typically extracts metals from crushed batteries by melting or dissolving them, the new process saves valuable raw materials, and likely also energy.

Argonne’s 2021 Maria Goeppert Mayer Fellows bring new energy, promise to their fields

The Department of Energy’s Argonne National Laboratory is proud to welcome five new FY21 Maria Goeppert Mayer Fellows to campus, each chosen for their incredible promise in their respective fields.

How to Make All Headphones Intelligent

How do you turn “dumb” headphones into smart ones? Rutgers engineers have invented a cheap and easy way by transforming headphones into sensors that can be plugged into smartphones, identify their users, monitor their heart rates and perform other services. Their invention, called HeadFi, is based on a small plug-in headphone adapter that turns a regular headphone into a sensing device. Unlike smart headphones, regular headphones lack sensors. HeadFi would allow users to avoid having to buy a new pair of smart headphones with embedded sensors to enjoy sensing features.

UChicago scientists design stretchable electronics, perform better under strain

Recent technological advances have made stretchable sensors possible, but their changes in shape can affect the data produced, and many sensors cannot collect and process the body’s faintest signals. A new sensor design from the Pritzker School of Molecular Engineering (PME) at the University of Chicago helps solve that problem.

Scientists Streamline Process for Controlling Spin Dynamics

UPTON, NY—Marking a major achievement in the field of spintronics, researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices.

Remote Work Suits Jefferson Lab Technical Designer

The COVID-19 pandemic has turned workplaces everywhere upside down, prompting countless brainstorming sessions on how to make work environments safer or whether jobs might be done just as well from home. Jefferson Lab technical designer Mindy Leffel says working from home during the pandemic has been a learning process, but has only motivated her to prove herself.

3D-Printed Smart Gel Changes Shape When Exposed to Light

Inspired by the color-changing skin of cuttlefish, octopuses and squids, Rutgers engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes “artificial muscle” and may lead to new military camouflage, soft robotics and flexible displays. The engineers also developed a 3D-printed stretchy material that can reveal colors when light changes, according to their study in the journal ACS Applied Materials & Interfaces.

Nikhil Tiwale: Practicing the Art of Nanofabrication

Applying his passions for science and art, Nikhil Tiwale—a postdoc at Brookhaven Lab’s Center for Functional Nanomaterials—is fabricating new microelectronics components.

‘Cyborg’ technology could enable new diagnostics, merger of humans and AI

Connecting electronics directly to human tissues in the body is a challenge. Today, a team is reporting new coatings for components that could help them more easily fit into this milieu. The researchers will present their results at the American Chemical Society Fall 2020 Virtual Meeting & Expo.

Quantum Materials Quest Could Benefit From Graphene That Buckles

Graphene, an extremely thin two-dimensional layer of the graphite used in pencils, buckles when cooled while attached to a flat surface, resulting in beautiful pucker patterns that could benefit the search for novel quantum materials and superconductors, according to Rutgers-led research in the journal Nature. Quantum materials host strongly interacting electrons with special properties, such as entangled trajectories, that could provide building blocks for super-fast quantum computers. They also can become superconductors that could slash energy consumption by making power transmission and electronic devices more efficient.

Safer, longer-lasting energy storage requires focus on interface of advanced materials

More studies at the interface of battery materials, along with increased knowledge of the processes at work, are unleashing a surge of knowledge needed to more quickly address the demand for longer-lasting portable electronics, electric vehicles and stationary energy storage for the electric grid.

‘Blinking” Crystals May Convert CO2 into Fuels

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.