Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications

In a study published April 16 in ACS Photonics, University of Wisconsin–Madison researchers fabricated graphene into the smallest ribbon structures to date using a method that makes scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

Using Holographic Endoscopes to Observe Distant Objects

Scientists are developing tools to observe the biological machinery in in vivo animal models to be able to understand and better treat severe brain diseases, and holographic endoscopes attracted interest because of their potential to conduct minimally invasive observations. In APL Photonics, researchers in Germany created a particularly narrow endoscope made of single hair-thin optical fibers that uses holographic methods to reconstruct images of macroscopic objects placed in front of the far end of the endoscope.

Twistoptics—A New Way to Control Optical Nonlinearity

Columbia Engineering researchers report that they developed a new, efficient way to modulate and enhance an important type of nonlinear optical process: optical second harmonic generation—where two input photons are combined in the material to produce one photon with twice the energy—from hexagonal boron nitride through micromechanical rotation and multilayer stacking. Their work is the first to exploit the dynamically tunable symmetry of 2D materials for nonlinear optical applications.

Molybdenum Disulfide Ushers in Era of Post-Silicon Photonics

Researchers of the Center for Photonics and Two-Dimensional Materials at MIPT, together with their colleagues from Spain, Great Britain, Sweden, and Singapore, including co-creator of the world’s first 2D material and Nobel laureate Konstantin Novoselov, have measured giant optical anisotropy in layered molybdenum disulfide crystals for the first time. The scientists suggest that such transition metal dichalcogenide crystals will replace silicon in photonics. Birefringence with a giant difference in refractive indices, characteristic of these substances, will make it possible to develop faster yet tiny optical devices. The work is published in the journal Nature Communications.

Black Phosphorus Future in 3D Analysis, Molecular Fingerprinting

Many compact systems using mid-infrared technology continue to face compatibility issues when integrating with conventional electronics. Black phosphorus has garnered attention for overcoming these challenges thanks to a wide variety of uses in photonic circuits. Research published in Applied Physics Reviews highlights the material’s potential for emerging devices ranging from medical imaging to environment monitoring, assessing progress in different components of the chips, from light detection to laser emission.

YOUNG INVESTIGATOR

Tingyi Gu, an assistant professor of electrical and computer engineering at the University of Delaware, has been selected for the Army Research Office Young Investigator Program. This prestigious award goes to early-career researchers pursuing fundamental research in areas relevant to the Army. Gu is studying materials that exploit the interface between light and electronics for potential use in lasers, displays, memory and more.

Identifying Light Sources Using Artificial Intelligence

Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy. Traditionally, identifying light sources as diverse as sunlight, laser radiation, or molecule fluorescence has required millions of measurements, particularly in low-light environments, which limits the realistic implementation of quantum photonic technologies. In Applied Physics Reviews, researchers demonstrated a smart quantum technology that enables a dramatic reduction in the number of measurements required to identify light sources

Moving Precision Communication, Metrology, Quantum Applications from Lab to Chip

Photonic integration has focused on communications applications traditionally fabricated on silicon chips, because these are less expensive and more easily manufactured, and researchers are exploring promising new waveguide platforms that provide these same benefits for applications that operate in the ultraviolet to the infrared spectrum. These platforms enable a broader range of applications, such as spectroscopy for chemical sensing, precision metrology and computation. A paper in APL Photonics provides a perspective of the field.